FEDERAL PUBLIC SERVICE COMMIN

period will be: (a) 8 Sec.

(b) 4 Sec.

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2013

PHYSICS, PAPER-I

FEDERAL PUBLIC SERVICE COMMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2013 PHYSICS, PAPER-I TIME ALLOWED: (PART-I MCQs) 30 MINUTES MAXIMUM MARKS: 20 (PART-II) 2 HOURS & 30 MINUTES MAXIMUM MARKS: 80 (PART-II) 2 HOURS & 30 MINUTES MAXIMUM MARKS: 80 (PART-II) 2 HOURS & 30 MINUTES MAXIMUM MARKS: 80 (PART-II) 2 HOURS & 30 MINUTES MAXIMUM MARKS: 80 (PART-II) (MCQs) on separate OMR Answer Sheet which shall be taken back after 30 minutes. (ii) Overwriting/cutting of the options/answers will not be given credit. (iii) Use of Calculator is allowed. PART-I ((MCQs) (COMPULSORY) Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20, (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-minor axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) None of these 1. The P.E of a simple harmonic oscillator is: (a) Ecomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -1/2 kx² (b) 1/2 kx² (c) kx² (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h respectively towards each other. After 15 minutes they will be at a distance of:
TIME ALLOWED: (PART-I MCQs) 30 MINUTES MAXIMUM MARKS: 20 THREE HOURS (PART-II) 2 HOURS & 30 MINUTES MAXIMUM MARKS: 80 NOTE: (i) First attempt PART-I (MCQs) on separate OMR Answer Sheet which shall be taken back after 30 minutes. (ii) Overwriting/cutting of the options/answers will not be given credit. (iii) Use of Calculator is allowed. PART-I ((MCQs) (COMPULSORY) Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -\frac{1}{2} kx^2 (b) \frac{1}{2} kx^2 (c) kx^2 (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
TIME ALLOWED: (PART-I MCQs) 30 MINUTES MAXIMUM MARKS: 20 THREE HOURS (PART-II) 2 HOURS & 30 MINUTES MAXIMUM MARKS: 80 NOTE: (i) First attempt PART-I (MCQs) on separate OMR Answer Sheet which shall be taken back after 30 minutes. (ii) Overwriting/cutting of the options/answers will not be given credit. (iii) Use of Calculator is allowed. PART-I ((MCQs) (COMPULSORY) Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -\frac{1}{2} kx^2 (b) \frac{1}{2} kx^2 (c) kx^2 (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
TIME ALLOWED: (PART-I MCQs) 30 MINUTES MAXIMUM MARKS: 20 THREE HOURS (PART-II) 2 HOURS & 30 MINUTES MAXIMUM MARKS: 80 NOTE: (i) First attempt PART-I (MCQs) on separate OMR Answer Sheet which shall be taken back after 30 minutes. (ii) Overwriting/cutting of the options/answers will not be given credit. (iii) Use of Calculator is allowed. PART-I ((MCQs) (COMPULSORY) Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -\frac{1}{2} kx^2 (b) \frac{1}{2} kx^2 (c) kx^2 (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
TIME ALLOWED: (PART-I MCQs) 30 MINUTES MAXIMUM MARKS: 20 THREE HOURS (PART-II) 2 HOURS & 30 MINUTES MAXIMUM MARKS: 80 NOTE: (i) First attempt PART-I (MCQs) on separate OMR Answer Sheet which shall be taken back after 30 minutes. (ii) Overwriting/cutting of the options/answers will not be given credit. (iii) Use of Calculator is allowed. PART-I ((MCQs) (COMPULSORY) Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -\frac{1}{2} kx^2 (b) \frac{1}{2} kx^2 (c) kx^2 (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
TIME ALLOWED: (PART-I MCQs) 30 MINUTES MAXIMUM MARKS: 20 THREE HOURS (PART-II) 2 HOURS & 30 MINUTES MAXIMUM MARKS: 80 NOTE: (i) First attempt PART-I (MCQs) on separate OMR Answer Sheet which shall be taken back after 30 minutes. (ii) Overwriting/cutting of the options/answers will not be given credit. (iii) Use of Calculator is allowed. PART-I ((MCQs) (COMPULSORY) Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -\frac{1}{2} kx^2 (b) \frac{1}{2} kx^2 (c) kx^2 (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
TIME ALLOWED: (PART-I MCQs) 30 MINUTES MAXIMUM MARKS: 20 THREE HOURS (PART-II) 2 HOURS & 30 MINUTES MAXIMUM MARKS: 80 NOTE: (i) First attempt PART-I (MCQs) on separate OMR Answer Sheet which shall be taken back after 30 minutes. (ii) Overwriting/cutting of the options/answers will not be given credit. (iii) Use of Calculator is allowed. PART-I ((MCQs) (COMPULSORY) Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -\frac{1}{2} kx^2 (b) \frac{1}{2} kx^2 (c) kx^2 (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
NOTE: (i) First attempt PART-I (MCQs) on separate OMR Answer Sheet which shall be taken back after 30 minutes. (ii) Overwriting/cutting of the options/answers will not be given credit. (iii) Use of Calculator is allowed. PART-I ((MCQs) (COMPULSORY) Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-major axis of its orbit. (c) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -\frac{1}{2}kx^2 (b) \frac{1}{2}kx^2 (c) kx^2 (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
NOTE: (i) First attempt PART-I (MCQs) on separate OMR Answer Sheet which shall be taken back after 30 minutes. (ii) Overwriting/cutting of the options/answers will not be given credit. (iii) Use of Calculator is allowed. PART-I ((MCQs) (COMPULSORY) Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-major axis of its orbit. (c) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -\frac{1}{2}kx^2 (b) \frac{1}{2}kx^2 (c) kx^2 (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
NOTE: (i) First attempt PART-I (MCQs) on separate OMR Answer Sheet which shall be taken back after 30 minutes. (ii) Overwriting/cutting of the options/answers will not be given credit. (iii) Use of Calculator is allowed. PART-I ((MCQs) (COMPULSORY) Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (e) None of these 2. If the velocity of the particle becomes doubled then its K.E: (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) $-\frac{1}{2} kx^2$ (b) $\frac{1}{2} kx^2$ (c) kx^2 (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
(ii) Overwriting/cutting of the options/answers will not be given credit. (iii) Use of Calculator is allowed. PART-I ((MCQs) (COMPULSORY) Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-major axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (e) None of these 2. If the velocity of the particle becomes doubled then its K.E: (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -\frac{1}{2}\tex^2 (b) \frac{1}{2}\tex^2 (c) \tex^2 (d) \text{ kx} (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
PART-I ((MCQs) (COMPULSORY) Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-major axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (e) None of these 2. If the velocity of the particle becomes doubled then its K.E: (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -1/2 kx² (b) 1/2 kx² (c) kx² (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
PART-I ((MCQs) (COMPULSORY) Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (e) None of these 2. If the velocity of the particle becomes doubled then its K.E: (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -1/2 kx² (b) 1/2 kx² (c) kx² (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
 Q.1. (i) Select the best option/answer and fill in the appropriate Circle on the OMR Answer Sheet. (20x1=20) (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. 1. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-minor axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (e) None of these 2. If the velocity of the particle becomes doubled then its K.E: (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -1/2 kx² (b) 1/2 kx² (c) kx² (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
 (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-major axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (e) None of these If the velocity of the particle becomes doubled then its K.E: (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these The P.E of a simple harmonic oscillator is: (a) -1/2 kx² (b) 1/2 kx² (c) kx² (d) kx (e) None of these Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
 (ii) Answers given anywhere, other than OMR Answer Sheet, shall not be considered. The square of the orbital period of a planet is: (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-major axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (e) None of these If the velocity of the particle becomes doubled then its K.E: (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these The P.E of a simple harmonic oscillator is: (a) -1/2 kx² (b) 1/2 kx² (c) kx² (d) kx (e) None of these Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
 (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-major axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (e) None of these 2. If the velocity of the particle becomes doubled then its K.E: (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -1/2 kx² (b) 1/2 kx² (c) kx² (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
 (a) Directly proportional to the cube of the semi-major axis of its orbit. (b) Directly proportional to the cube of the semi-minor axis of its orbit. (c) Inversely proportional to the cube of the semi-major axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (e) None of these 2. If the velocity of the particle becomes doubled then its K.E: (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -1/2 kx² (b) 1/2 kx² (c) kx² (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
 (c) Inversely proportional to the cube of the semi-major axis of its orbit. (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (e) None of these 2. If the velocity of the particle becomes doubled then its K.E: (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -1/2 kx² (b) 1/2 kx² (c) kx² (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
 (d) Inversely proportional to the cube of the semi-minor axis of its orbit. (e) None of these 2. If the velocity of the particle becomes doubled then its K.E: (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these 3. The P.E of a simple harmonic oscillator is: (a) -1/2 kx² (b) 1/2 kx² (c) kx² (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
 If the velocity of the particle becomes doubled then its K.E: (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these The P.E of a simple harmonic oscillator is: (a) -1/2 kx² (b) 1/2 kx² (c) kx² (d) kx (e) None of these Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
 (a) Becomes doubled (b) Reduces to half (c) Becomes four times (d) None of these The P.E of a simple harmonic oscillator is: (a) -\frac{1}{2}kx^2 (b) \frac{1}{2}kx^2 (c) kx² (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
 The P.E of a simple harmonic oscillator is: (a) -1/2 kx² (b) 1/2 kx² (c) kx² (d) kx (e) None of these Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
(a) $-\frac{1}{2}kx^2$ (b) $\frac{1}{2}kx^2$ (c) kx^2 (d) kx (e) None of these 4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
4. Two car racers are 100 Km away from each other. They drive their cars at 40 Km/h and 60 Km/h
respectively towards each other. After 15 minutes they will be at a distance of:
(a) 25 Km (b) 50 Km (c) 60 Km (d) 75 Km (e) None of these
5. The equation of adiabatic change is: (a) $PV^r = K$ (b) $P^rV = K$ (c) $(PV)^r = K$ (d) None of these
6. By exerting a certain amount of pressure on an ice block, you:
(a) Rise its melting point (b) Lower its melting point
(c) Make it melting at 0°C only (d) None of these
7. Mercury thermometer can be used to measure temperature upto:
(a) 250°C (b) 100°C (c) 360°C (d) 500°C (e) None of these
8. Three Vectors \vec{A} , \vec{B} and \vec{C} not in the same plane make a Parallelepiped. The volume of Parallelepiped is:
(a) $(\vec{A} \times \vec{B}) \times \vec{C}$ (b) $(\vec{A} \cdot \vec{B}) \times \vec{C}$ (c) $(\vec{A} \times \vec{B}) \cdot \vec{C}$ (d) $(\vec{A} \cdot \vec{B}) \cdot \vec{C}$ (e) None of these
9. The moment arm $(\vec{r}=4m)$ and force $(\vec{F}=10N)$ make an angle of 30° about the turning point. The
torque produced will be:
(a) 40 N.m (b) 20 N.m (c) 34.6 N.m (d) None of these
10. In total internal reflection the refracted ray makes an angle of with the normal.
(a) 0° (b) 90° (c) 180° (d) None of these
11. Solar eclipse occurs when:
(a) Earth is between sun and moon (b) Sun is between moon and earth (c) Moon is between earth and sun (d) None of these
 (c) Moon is between earth and sun (d) None of these 12. Light is dispersed into different colours when passing through a glass prism because:
(a) Refraction of light occurs in glass (b) Refractive index of different colours is different
(c) Glass is denser than air (d) None of these
13. A ball is thrown with a velocity of $8\hat{j}$ (m/Sec). The acceleration (m/Sec ²) is
$4\hat{i} + 2\hat{j}$ (\hat{i} and \hat{j} are unit vectors). The displacement after 5 seconds:
41 + 2 J (1 and J are unit vectors). The displacement after 5 seconds:
(a) 52m (b) 68m (c) 82m (d) None of these 14. The time period of a Second's pendulum is 2 Sec. The mass of the Spherical bob of Second's pendulum

(e) None of these

(c) 1 Sec.

(d) 2 Sec.

PHYSICS, PAPER-I

15.	The eq	nation of the displacement of a harm	nonic	oscillator is x=3	Sinw	rt + 4 Cos	swt ^(m) .	dent	de of
	the par (a) 1r	icle will be: (b) 5m		7m		12m	(e)	None	4
16.		is equivalent to: 00 liters (b) 100 liters	(c)	10 liters	(d)	None of	these		2
17.	` ,	quency of Second's pendulum is:	(C)	TO IIICIS	(u)	rone of	these		1.0
10	(a) 2	` ,	(c)	0.5 hertz	(d)	None of			
	(a) So	dient of Scalar Potential is: alar quantity (b) Vector quantity	(c)	Neither Scalar r	or Ve	ector	(d)	None of th	nese
19.		Beats are produced because of: (b) Refrection of cound wayses (c) Refrection of cound wayses							
	` '	 a) Interfrence of sound waves b) Refraction of sound waves c) Diffraction of sound waves d) None of these 							
20.	The so	ne sound waves are:							
	(a) Lo	ngitudinal (b) Transve	rse	(c) Electron	nagne	tic	(d)	None of the	iese
			\mathbf{P}_{A}	ART-II					
NOT	E: (i)	Part-II is to be attempted on the se	parate	e Answer Book.					
	(iii) (iv)	Candidate must write Q. No. in the Attempt ONLY FOUR questions for Extra attempt of any question or an Use of Calculator is allowed.	om P	ART-II. ALL qu	uestio	ns carry	EQU A	AL marks.	•
Q.No).2. (a	The Vectors $\vec{A} = 2\hat{i} + \hat{j} + \vec{A} \& \vec{B}$, $\vec{A} \cdot \vec{B}$ and Projection of			ind	the ma	ıgnitud	es of ((2,2,3,3)
	(b	\rightarrow \rightarrow \rightarrow \rightarrow							(6)
	(c				oordir	nate syste	m cons	stant	(0)
	(0	vectors? Explain.		ar and spirement e	001411	iate by ste	in com	, tairt	(4)
Q.No	.3. (a	1	y mo	-	اء مائده ما	la.			(2.4.4)
	(b	(i) Law of AreasUse Maxwell's equations to de	erive t	(ii) Law of j	L		on.		(2,4,4) (10)
O.No	.4. (a	_		_		_		eard by	,
Q. 110	(4	observer when:							
		(i) The observer moving to							(2.6.6)
	(b	(ii) The source is moving t A stationary observer detects s		•			from a	source	(2,6,6)
	(10	at rest. He detects sound of fr							
		him with constant velocity. De		ne velocity of so	ınd.				(6)
		(Velocity of sound = 341 m/Se	ec.)						(6)
Q.No	.5. (a	<u>e</u>		•	the c	conditions	of		(10)
	(b	constructive and destructive in The double slit arrangement is			wave	elength 54	16nm. 1	the	(10)
	(~	slits are 0.12mm apart and the		• •		_			
		55cm away. What is angular p	ositio	n of first maxima	? Wha	at is linea	r dista	nce	(4.6)
		between 3 rd and 4 th maxima?							(4,6)
Q.No	.6. (a		tivity	. Show the relativ	istic e	effect on 1	mass, l	_	(3,3,3,3)
	and time.(b) What is the total energy E of a 2.53 Mev electron? Wh						en an energy is used as a		
	(~	adjective, it refers to the Kinet						·	(8)
Q.No	.7. (a	Derive the expressions of posi-	tion a	nd time coordina	tes in	frame S'	relati	ve to S	
	~	(Lorentz Transformation).		. 1 6					(12) (8)
0.71	(p	•		steady flow.				(40 -	(8)
Q.No	o.8. W (a	rite notes on any TWO of the follow Travelling and Standing Wave	_					(10 each	a) (20)

Laws of thermodynamics.

LASER, its production and applications.

(b)

(c)
