Shindent Bounty.com FEDERAL PUBLIC SERVICE COMMISSI

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2011

PHYSICS, PAPER-II

TIME	E ALLOWED:	(PART-I MCQs)	30 MINUTES		MAXI	MUM	I MARKS: 20				
	EE HOURS	(PART-II)	2 HOURS & 30				I MARKS: 80				
NOTI		•	Qs) on separate Answer	Sheet	which shall be taken ba	ick afte	er 30 minutes.				
	` '	scientific calculate		ill not	he given credit						
(iii) Overwriting/cutting of the options/answers will not be given credit. (PART-I MCQs) (COMPULSORY)											
0.1	0.1 441 1 4					4	(1 20 20)				
Q.1.	Select the best	option/answer and	fill in the appropriate	e box	on the Answer Shee	t.	$(1 \times 20=20)$				
(i)	The Lorentz for	rce is the sum of:									
	(a) Gravitatio	onal and centripetal	force	(b)	Electric and magnetic force						
	(c) Magnetic	and nuclear force		(d)	Electric and nuclear force						
(ii)	The area under the hysteresis loop is proportional to:										
	(a) Magnetic	energy density		(b)	Thermal energy per unit volume						
	(c) Electrical energy per unit volume				Mechenical energy per unit volume						
(iii)	The frequency of	of A.C is measured	using:								
	(a) Multimete	er (b)	Avometer	(c)	Tachometer	(d)	Speedometer				
(iv)	Δ .E= ρ/ε_0 is call	ed:									
	(a) Gauss's la	aw (b) Farada	ay's law (c)	Amp	pere 's law (d) H	3oit an	d savart law				
(v)	For computation	n of the rate at whi	ch the dipole radiates	energy	, the interaction of th	ie norr	nal component				
	of is don	e over sphere of ra	dius R.								
	(a) Electric fi	eld (b)	Pointing vector	(c)	Addition vector	(d)	Radiation				
(vi)	Semiconductor	material have	bonds:								
	(a) Ionic	(b)	Covalent	(c)	Mutual	(d)	Metallic				
(vii)	The depletion re	egion of a p-n junc	tion is formed:								
	(a) During the manufacturing process				When forward bias is applied to it						
	(c) Under rev	rerse bias		(d)	When its temperatu	re is re	educed				
(viii)	The current am	plification factor al	pha dc is given by:								
	(a) $I_{\rm C}/I_{\rm E}$	(b)	$I_{\rm C}/I_{\rm B}$	(c)	$I_{\rm B}/I_{\rm E}$	(d)	I_B/I_C				
(ix)	In amplitude me	odulation:									
	(a) Carrier frequency is changed				Carrier amplitude is	s chang	ged				
	(c) Three sidebands are produced				Fidelity is improved						
(x)	Demodulation:										
	(a) is perform	ned at the transmitt	ing station	(b)	removes side bands						
	(c) rectifies n	nodulation signal		(d)	is opposite of modu	lation					
(xi)	Which of the following X-rays lines will have the greatest frequency in a given element?										
	(a) K_{α}	(b)	K_{β} (c) L	α	(d) It depends	on the	e element				
(xii)	Which of these	statements is a con	sequence of plank's do	eriveti	on of the radiation la	.w2					
(AII)			nd absorb energy at dis			. VV :					
			nd absorb energy at dis		•						
			nd absorb energy at dis	(d)	Neither (a) nor (b)						
(viii)	` '	` '	n of the electron is cal	` /							
(xiii)	(a) Anomalou		Normal	(c)	Paschen	(d)	None of these				
(viv)	()	gy of harmonic osc		(0)	1 aschell	(u)	TAOTIC OF HIESE				
(xiv)			hw/2	(a)	Zero	(d)	$\hbar w^2$				
	(a) ħ w	(b)	11 W / 4	(c)	2010	(u)	11 VV				

Page 1 of 2

PHY	<u> </u>	, PAP	<u> </u>						3	
(xv)	Accor	ding to	Pauli Exclus	sion prin	ciple for two id	lentical f	ermi	ons, the total _	is antisy	2
	(a) 1	Matrix		(b)	Wave function	n	(c)	Operator	(d) Te	OLL
(xvi)	The de	ecay rat	e of a radioa	ctive so	arce is measure	d in unit	s of:			12
	(a) (Curies		(b) Ro	entgens		(c)	Rads	(d) Rems	BOUNTS
(xvii)	Why a	re the f	ission fragm	ents usu	ally radioactive	e?				
	(a) They come originally from radioactive ²³⁵ U					(b)	They have a large neutron excess			
	(c) They have a large binding energy per nucleon (d) They are moving at high						ving at high speed	l		
(xviii)	In a nu	ıclear r	eactor, the fu	inction c	of the moderator	r is:				
	(a) t	o abso	rb neutrons			(b)	to ke	eep the reactor	from going critic	al
	· /					to al				
(xix)	What is the main difficulty associated with the fusion process as a source of electrical power?									
()	(a) The scarcity of fuel (b) The coulomb barrier									
	` /	. ,					(d)	The danger of an explosion.		
(xx)	Binding energy of a deuteron is									
()		2.22 Me		(b)	2.80 Mev		(c)	2.3 Mev	(d) None	of these
	()			(-)		RT-II	(-)			
NOT				-	ed on separate A					
	(ii)		-		-			-	rry EQUAL ma	rks.
	(iii)		a attempt of idered.	any qu	estion or any p	oart of tl	ne at	tempted ques	tion will not be	
		COHSI	uci cu.							
Q.2.	(a)	How can an LRC series circuit made to find the dielectric constant of a medium?						(10)		
	(b)	A 1.5-mH inductor in an <i>LC</i> circuit stores a maximum energy of 17 <i>uj</i> . What is the peak current <i>I</i> ?							(10)	
Q.3.	(a)	Obtain Faraday's law of electromagnetic induction. Emphasize the role of the Lenz's law.							(7, 3)	
	(b) A solenoid has length $L = 1.23$ m and inner diameter $d = 3.55$ cm. It has five layers of windings of 850 turns each and carries a current $\mathbf{i_0} = 5.57$ A. What is \mathbf{B} at its center?								(10)	
Q.4.	(a)	Discuss and explain the common-base static characteristics.								(10)
	(b)	Where did Rayleigh and Jeans go wrong? How did Planck radiation formula account								(3,7)
	for the discrepancy in the black body radiations									
Q.5.	(a)	Is the Compton effect more supportive of the photon theory of light than the photoelectric effect? Explain your answer.								(4,6)
	(b) A bullet of mass 41 g travels at 960 m/s. What wavelength can we associate with it? Why does the wave nature of the bullet not reveal itself through diffraction effects?								(6,4)	
Q.6.	(a)	How does the Rutherford orbital motion violate t					he classical physics? (10			
	(b) Discuss the modification suggested in the Bohr's atomic model to account for the nuclear motion and the hydrogenic atoms.								(10)	
Q.7.	(a)	(a) In what basic ways do the so-called strong force Explain your answer.				and tl	(10)			
	(b)	(b) Analysis of Potassium and Argon atoms in a moon rock sample by a mass spectrometer shows that the ratio of the number of (stable) ⁴⁰ Ar atoms present to the number of (radioactive) ⁴⁰ K atoms is 10.3. Assume that all the Argon atoms were produced by the decay of Potassium atoms, with a half-life of 1.25 X 10 ⁹ y. How old is the rock?								
Q.8.	Write notes on ANY TWO of the following:								(10 +	
		(a)	Schrödinge			(b)	Nι	iclear Fission	and fusion	10 = 20)
		c)	Semicondu	ictors an	d applications					
