						S	JM MARKS:20	
PHVSI	CS PAPFR <u>-II</u>						"Te	
			LIC SERVICE (N		200	
			IVE EXAMINA' F TO POSTS IN		S.No.		E.	
			RAL GOVERNM				24	
				,	R.No.			
- B		-	<u>YSICS, PAPER-I</u>	1				
TIM	E ALLOWED:	(PART-I)	30 MINUTES					
		(PART-II)	2 HOURS & 30) MINUTES	MA	KIMU	JM MARKS:80	
NOTE		empt PART-I minutes.	(MCQ) on separa	ate Answer She	et which sh	all be	taken back	
			of the options/ans ulator is allowed.		oe given cre	dit.		
			<u>PART – I (</u> (COMPULS					
).1.	Select the best	ontion/answe	r and fill in the a	i	z on the An	wer	Sheet. (20)	
(i)		-	resonance circuit					
(1)	(a) Greater th		Equal to R	(c) Zero		(d)	None of these	
(ii)		-		a magnetic field	d of 0.1 T fl	ux de	nsity. If the radius	
	of the path is 56 (a) 2.79 GHz		frequency is: 3.1 MHz	(c) 2.8 K	Hz	(d)	None of these	
(iii)		<pre></pre>				` '	54 MJ of electrical	
	energy into hear	t energy. Then	the potential diffe	erence across th	e heater is:			
(iv)	(a) 864 V		240 V	(c) 100		· · /	None of these ential difference of	
							ble the velocity of	
	the alpha partic	le?						
	(a) 2400 V	· · ·	3600 V	(c) 4800		` '	None of these	
(v)	to the other is:	el wires carry	currents along the	same direction	. The force	exper	ienced by one due	
	(a) Parallel to the lines (b) perpendicular to the lines and attractive							
	· · · ·		s and repulsive		e of these			
(vi)	If 300 mA current is passing through an electric bulb, then the number of electrons passing through in one minute will be:							
	(a) 1.12×10^{20}			(c) 6.02×	$\times 10^{18}$	(d)	None of these	
(vii)		· · ·		. ,		· · /	developed in 30s	
	is:	A \						
((a) 15 kJ	(b)		(c) $10 J$	$20^{\circ}C$ To 1		None of these nany atmospheres	
(viii)			to be compressed to			10 w 1	nany autospheres	
	(a) 5.2 atm	•	2.47 atm	(c) 1.5 a		(d)	None of these	
(ix)			bit corresponds to					
(\mathbf{v})			Minimum energy rons across the un			(d)	None of these	
(x)	(a) Forward b		Reverse bias		etion region		None of these	
(xi)		· · ·	biasing acts like a	ı:	U			
	(a) Capacitor	· · ·	Inductor	(c) Insul		```	None of these	
(xii)	The impedance at the resonant frequency of a series RLC circuits with L = 15 mH, C=0.015 F, and R = 80 Ω :							
	(a) $0 K\Omega$	(b)	30 Ω	(c) 80 Ω	1	(d)	None of these	
(xiii)	Weber is a unit	· · ·	-	(-, 0000		()		
	(a) Magnetic field intensity (b) Magnetic Flux							
	(c) Magnetic Flux Density(d) None of theseThe magnetic flux through an element of area A in a uniform magnetic field B is expressed as:							
(xiv)	(a) AB	lux through an (b)		(c) A x I			None of these	
(xv)				< ,		` '	e 2A, -3A and 4A,	
	then the current in the fourth branch is:							
	(a) 2A	(b)	-3 A	(c) 4 A	(d)	Nor	ne of these	
							Page 1 of 2	

۰.

www.StudentBounty.com Homework Help & Pastpapers

PHYSICS, PAPER-II

- With the passage of time, the rate of decay of a radioactive element will: (xvi)
 - Increase exponentially (a)
 - (c) Becomes zero in two half-life time
- Decrease linearly (\mathbf{b})
- None of these (d)
- (xvii) The place where controlled fission chain reaction is carried is? (a)

(b) A star A black hole A reactor (c)

StudentBounts.com (xviii) In 19th century, Faraday and Maxwell worked on the unification of two forces named as: (a) Gravitational and Weak forces (b) Electric and magnetic forces Weak and Strong forces (d) None of these (c)

(xix) Electromagnetic wave theory of light was proposed by: (a) Newton (b) Michelson (c) Maxwell (d) None of these The concept of field theory was put forward by: (xx)Franklin Kepler Orsted None of these (a) (b) (d) (c)

NOTE:	(i) (ii) (iii)	PART-II is to be attempted on the separate Answer Book . Attempt ONLY FOUR questions from PART-II . All questions carry EQUAL marks. Extra attempt of any question or any part of the attempted question will not be considered.
	(iv)	Use of Scientific calculator is allowed.

- **Q.2.** (a) State and prove Gauss law. Compare it with Coulomb's law for calculating electric field. (4+4+2)
 - (b) Determine the E field caused by a spherical cloud of electrons with a volume charge density $\rho = \rho_0$ for $0 \le R \le b$ (both ρ_0 and b are positive) and $\rho = 0$ for R > b. Sketch the charge distribution and electric field for this charge. (6+4)
- Explain Maxwell's equations. Write the fundamental relations for electrostatic and **Q.3.** (a) magnetostatic models. How these were modified to Maxwell's equations? What is the main contribution of Maxwell in this regard? (4+2+4+2)
 - Derive Maxwell's two divergence equations from its two curl equations and the equation of (b) continuity. (4+4)
- **Q.4.** (a) What are P-type and N-type semiconductors? Draw ampere-volt characteristic of a PN junction. Why there is sudden increase in the small reverse saturation current at the breakdown voltage? Write the uses of zener diode. (4+2+4+2)
 - (b) What are transistors? Draw the three common transistor circuits. Explain the function of transistor in the saturation mode. (2+2+4)
- Q.5. What is Compton Effect? Derive an expression for Compton shift. How it depends upon the scattering angle? What do you mean by Red Shift? (2+8+6+4)
- Describe Schrodinger's wave equation. Normalize $\Psi = \mathbf{A}e^{-\alpha x}$, where A and α are real **Q.6.** (a) constants, A has units of (length)^{-1/2} and α with units of (length)⁻². (6+4)
 - What is the probability of finding the particle described by this wave function between x = 0.99(b) and x = 1.01 units? Also find the possible solution for E and V.

[Given the integration from
$$-\infty$$
 to $+\infty \int_{e}^{-2x} dx = \sqrt{(\pi/2)}$] (4+6)

- Explain Radioactive decay. Find an expression for decay rate. Relate half life to the **Q.7.** (a) disintegration constant. What are the units for the measurement of radioactivity? (4+6+2+2)
 - A 2.71g sample of radioactive KCI is decaying at a constant rate of 440 Bq into the isotope ⁴⁰K, (b) which constitutes 1.17% of the normal potassium. Calculate the half-life of this nuclide. (6)
- Q.8. Write short notes on ANY TWO of the followings:
 - Poynting theorem and Poynting vectors (i)
 - (ii) Elementary particles and their properties
 - (iii) Unification of forces.

(10,10)

www.StudentBounty.com Homework Help & Pastpapers