PHYSICS PAP<u>ER-I</u>

planet?

(a)

 19.6 m/s^2

FEDERAL PUBLIC SERVICE COMMISSION **COMPETITIVE EXAMINATION FOR** RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2009

S.No.	
R.No.	

HVSICS PAP	ER-I				Stilde	
SERVICE	FEDE CO RECR	OMPETITIVI UITMENT T	C SERVICE COMMISSION E EXAMINATION FOR O POSTS IN BPS-17 UNDE	S.No.	THEOLINE	
	TH		L GOVERNMENT, 2009 CS, PAPER-I 30 MINUTES	R.No.	AXIMUM MARKS:20	3
TIME ALLO	WED:	(PART-II)	2 HOURS & 30 MINUTES		IAXIMUM MARKS:80	

NOTE: (i) First attempt PART-I (MCQ) on separate Answer Sheet which shall be taken back after 30 minutes. Overwriting/cutting of the options/answers will not be given credit. (ii) (iii) Use of Scientific Calculator is allowed.

		PART – I (MC					
0.4		(COMPULSO)				N. ((00)	
Q.1.	Select the best option/answ		_				
(i)	A body is moving northward						
···	(a) Northward (b)		(c)	Eastward	(d)	None of these	
(ii)	The correct form for the dim $(2\pi)^{3}$	ension of Power is:	()	NG 200-4	(1)	NI 0.1	
	(a) [ML ² T ⁻³] (b) The work done by the force	$[ML^{*}I^{*}]$	(c)	ML ² I	(d)	None of these	
(iii)	The work done by the force	$e F = 4a_x - 3a_y - 2a_z$	N ii	n giving a 1nC ch	arge a	a displacement of	
	$10\dot{a}_{x} + 2\dot{a}_{y} - 7\dot{a}_{z}m$ is:						
	(a) 10 nJ (b)	15 nJ	(c)	20 n.J	(d)	None of these	
(iv)	Three masses are placed on	the x-axis: 200g at x =	= 0.5	500g at x = 30cm,	and 4		
	The center of mass will be at	Three masses are placed on the x-axis; $200g$ at $x = 0$, $500g$ at $x = 30cm$, and $400g$ at $x = 70cm$. The center of mass will be at:					
	(a) 0.89 m (b)	0.69 m	(c)	0.39 m	(d)	None of these	
(v)	A 60 kg woman stands on a	a light, cubical box th	at is	5.0cm on each ed	ge. Th	ne box sits on the	
	floor. What pressure does the	e box exerts on the floo	or?				
	(a) $2.4 \times 10^5 \text{ N/m}^2$ (b)		(c)	$3\times10^5 \text{ N/m}^2$	(d)	None of these	
(vi)	SI unit of stress is same as the						
		Momentum					
(vii)	What is the maximum speed				us on	a level road if the	
	coefficient of static friction b				(1)	27 24	
	* /	14 m/s	` /			None of these	
(viii)	The equation of a simple har						
(:)	(a) $y = 5 \sin(4\pi t)$ (b)						
(ix)	Two particles each of mass	_		-	iess ii	gnt rod which is	
	capable of rotation about its (a) 1.25 kgm ² (b)				(4)	None of these	
(x)	The time period of mass of 1						
(A)	(a) 0.2π (b)	π	(c)			None of these	
(xi)	A 14cm inner diameter wate		· /		\ /		
(AI)	diameter faucet pipe. If the a						
	speed it causes in the water r		acct	pipe is 3.0 emis, ,	, 11000	in oo me average	
	=	0.15 m/s	(c)	0.5 m/s	(d)	None of these	
(xii)	What is the tension T in the				· /		
, ,	velocity of 2m/s?				,		
	(a) 12N (b)	8N	(c)	5N	(d)	None of these	
(xiii)	The ratio of linear Stress/Lin	near Strain is called:					
	(a) Young's Modulus (b)			Deformation	(d)	None of these	
(xiv)	A body is moving with const	tant speed in a circle, it	s velo	ocity vector:			
	(a) Remains constant (b)	Changes its magnitud	le (c)) Changes its dire	ection		
	(d) None of these					_	
(xv)	When a constant torque is ac				_	constant?	
	(a) Angular velocity (b)	Angular acceleration	(c)	Angular momen	tum		
	(d) None of these	1 1	<i>.</i> 1 ·	C.1 .1 XX	1	1 0 4	
(xvi)	A planet has a mass four time	nes and diameter twice	that	ot the earth. What	is the	value of g on the	

(c) 4.9 m/s^2 (d) None of these

(b) 9.8 m/s^2

				(d) No elativistic is:			
PHYSI	CS, PAPER-I			90			
(xvii)	A geo-stationary satellite revolves around the	earth from:		.35	6		
	(a) East to west (b) West to east	\ /	North to south	(d) No	6		
(xviii)	e , e		of a body, the r	elativistic is:	43.		
	(a) Length remains constant	\ /	Time decreases		2		
(•)	(c) Mass increases	` /	None of these		1.		
(xix)	If graph between 1/m and a is a straight line, the						
()	(a) $m \propto a$ (b) $m \propto 1/a$	* *	$n \propto 1/a^2$	(d) None			
(xx)	The frequency of rotation ω of a spaceship a	bout its own	axis to create	gravity like ea	arth is the		
	square root of: (a) g/r (b) r^2/g	(c) g	r/r^2	(d) None	of these		
	(a) g/1 (b) 1/g	(c) g	3/1	(u) None	or mese		
	PAR	RT – II					
	(i) PART-II is to be attempted on the sep	arate Answe i	r Book.				
	(ii) Attempt ONLY FOUR questions from			rry EQUAL m	narks.		
NOTE:	1 1			, -			
	considered.						
	(iv) Use of Scientific calculator is allowed.						
Q.2. (a)	Define gradient. Find the gradient of the ma	agnitude of a	nosition vecto	rr What cone	olucion do		
Q.2. (a)	you derive from your result?	agiiitude oi a	. position vecto	1 1. What Conc	(4,4,2)		
(b)		V What wou	ld he its divers	ence?	(4,4,2)		
			_				
Q.3. (a)	What is theory of relativity? Consider two inertial frames, A and B, with axes parallel and						
	origins O,O' coinciding at $t = t' = 0$ and B moving with uniform velocity \mathbf{v} along x-axis of A.						
	Letting $\gamma = 1/\sqrt{[1-(v^2c^2)]}$, the Lorenz tran						
	$t' = \gamma(t - vx/c^2)$. From the principle of equi	ivalence of in	nertial frames i	infer the invers	se Lorenz		
	transformation $B \rightarrow A$.		_		(8,4)		
(b)	We can write one of Maxwell's equation of	B in inertial f	frame 1 as				
	$\mathbf{B.} \ \mathbf{d1}_1 = \mu_0 \ (\mathbf{\varepsilon}_0$						
	Write it in inertial frame 2 according to Eins	tein's princip	ole of relativity.	Does $\mathbf{B}_1 = \mathbf{B}_2$? (4,4)		
Q.4. (a)	State and prove Bernoulli's Theorem.				(12)		
(b)	•						
	over the upper surface will give a pressur		of 900 Pa be	tween upper a	and lower		
	surface? Take the density of air to be 1.3×10^{-2}	9^{-3} g/cm ³ .			(8)		
Q.5. (a)	Describe waves and its types. Derive an ex	pression for	speed of wave	on a stretched	string by		
Z.2. (a)	Newton's second law.	P-2001011 101)	or or wave	on a suctomed	(4,8)		
(b)		g is			(1,0)		
	$Y = (2mm) \sin [(20nm)]$		5 ⁻¹)t].				
	The tension in the string is 15N.						
	(i) What is the wave speed?						
	(ii) Find the linear density of this string in	grams/meter.			(4,4)		
Q.6. (a)	What is interference of waves? Describe	all the nece	essary condition	ns for constru	ctive and		
2.0. (a)	destructive interference. Explain one interfer		bully condition	iis for constru	(2,6,4)		
(b)			e frequency 450	Hz are travel			
(0)	1:				1 1 C		

- same direction at 330 m/s. What is the phase difference of the waves at a point that is 4.4m from one source and 4m from the other source.
- State and explain Second Law of Thermodynamics. Prove that Clausius and Kelvin-Plank **Q.7.** (a) statements of it are equivalent.
 - A Carnot engine operates between the temperatures 850 K and 300 K. The engine performs 1200 J of work each cycle, which takes 0.25 s. Calculate its efficiency and its average power. What are the rates of heat input and heat exhaust per cycle?
- **Q.8.** Write short notes on **ANY TWO** of the followings:

(10,10)

- Laser and its applications
- (ii) Classical Maxwell-Boltzmann Statistics
- (iii) Dynamics of rigid bodies
