CHEMISTRY, PAPER-I

(a) Bauxite

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2009

	8
S.No.	TOOLIN
R.No.	

CHEMISTRY, PAPER-I

TIME	$AII()WHI) \cdot \vdash$	(PART-I)	30 MINUTES	O NAINI		IAXIMUM MARKS:20			
<u> </u>		(PART-II)	2 HOURS & 3	ou IVIIIN	UIES IV	IAXIMUM MARKS:80			
NOTE: (i) First attempt PART-I (MCQ) on separate Answer Sheet which shall be taken back after 30 minutes. (ii) Overwriting/cutting of the options/answers will not be given credit. (iii) Scientific calculator is allowed									
PART – I (MCQ) (COMPULSORY)									
Q.1.	Select the bes	st option/an	swer and fill in t	the app	ropriate box on th	ne Answer Sheet. (20)			
(i)	Which of the	following io	ns can act as both	n a Bron	sted acid and base	in water?			
	(a) HCO_3^-	(b)	SO_4^-	(c)	NO_3^-	(d) $\bar{C}N$			
(ii)	. , 3		•	, ,	cular orbital theory	` '			
(11)	(a) 1	(b)	-	(c)	4	(d) 3			
(iii)	Brass is an all	` ′		· /		、 /			
	(a) Copper a			(b)	1 1				
	` '	ım and Zinc		(d)	Aluminum and C	Copper			
(iv)			m bicarbonate ha	-		(d) 13.0			
(v)	(a) 5.6 A perpetual	(b)	7.0 chine canable o	(c) of gener	8.4	· /			
()	A perpetual motion machine capable of generating increasing amounts of energy without interacting with its surroundings can not exist. This is best explained by:								
	_	of Thermo	_		Third law of The				
	(c) Energy conservation principle (d) Gibbs-Helmholtz equation								
(vi)			when solved for						
	•	rizability			(b) The mean fre				
(vii)	` '	re function	of water needed		(d) The magneto				
(VII)	The number of molecules of water needed to convert one molecule of P ₂ O ₅ into ortho phosphoric acid is:								
	(a) 1	(b) 2	(c) 3	(d) 4				
(viii)									
	It occurs at								
<i>(</i> ')	(a) Cathode		o) Anode		Cathode & Anode	(d) External Conductor			
(ix)		-	entropy change i		yove zoro (d) D	anandant on the temperature			
(x)	(a) Always +ve (b) Always -ve (c) Always zero (d) Dependent on the temperature In which of the following compounds Nitrogen has the highest oxidation state?								
(11)	(a) NH ₄ Cl	e rono wing	(b) Mg_3N_2	_	(c) Na No ₃	(d) Na No ₂			
(xi)		s most acidi	ic in the following			(1)			
` '	(a) Chlorine (l	() oxide			(b) Phosphorou				
	(c) Sulfur (IV	,		•	(d) Germaniun				
(xii)	When Hydrogen ion unites with one molecule of water to form hydronium ion? Which type of bond is formed?								
			n polar covalent	(c)	Coordinate covale	nt (d) Hydrogen bond			
(xiii)	The value of		n polar covalent	(0)		ii (a) Hydrogen bond			
(AIII)	(a) 14	(b)	7	(c)	1×10^{-14}	(d) 1×10^{-7}			
(xiv)	1 /	` '		` '		which one of the following			
(2111)	effect?	J. 1 (1140) W		J.1 OI 11.	ingui modia navo	one of the following			
	(a) Lower the	pH (b)	Raise the pH	(c)	no effect on pH	(d) Release NH ₃ gas			
(xv)	Which one of	the following	ng is an ore of iro	n?					

(d) Smithsonite

(c) Taconite

(b) Galena

CHE	EMI	MISTRY, PAPER-I	80							
(xv	/i)	A sample of iron oxide contains 0.250 mole of iron atoms and 0.375 mole of oxyg. What is the empirical formula of the compound? At.wt; Fe = 56, O = 16; (a) FeO (b) Fe ₂ O ₃ (c) Fe ₃ O ₄ (d) FeO ₂ At equilibrium the change in free energy (Δ G or Δ F) for any given reaction is:								
		is the empirical formula of the compound?								
		At.wt; $Fe = 56$, $O = 16$;	43.							
	••	(a) FeO (b) Fe_2O_3 (c) Fe_3O_4 (d) FeO	O_2							
(xv	/ii)									
		(a) Positive and large (b) Positive and small								
(***	.:::\	(c) Zero (d) Negative and small								
(XV	/111)	iii) What is the Oxidation number of Si in $Si F_6^{2-}$?								
(:	1	(a) $+2$ (b) $+4$ (c) $+6$ (d) -6								
		Which element are more likely to form strong bases? (a) s-block metals (b) p-block metals (c) p-block non metals (d) d-block metals								
(xx)			JIOCK IIICIAIS							
		(a) A catalyst modifies the enthalpy of a system								
		(b) A catalyst modifies the nature of the product of a reaction.								
		(c) A catalyst modifies the entropy of a system								
		(d) A catalyst modifies the activation energy of a system								
		$\underline{\mathbf{PART}} - \underline{\mathbf{II}}$								
		(i) PART-II is to be attempted on the separate Answer Book.								
NIOT	DID.	(ii) Attempt ONLY FOLIR questions from PART-II All questions carry FO	UAL marks.							
NOT	LE:	(iii) Extra attempt of any question or any part of the attempted question								
		considered.								
Q.2.	(a)	(a) How Schrodinger wave equation is applied to understand the motion of the part	icle in the box?							
	()		(8)							
	(b)	(b) Define Hydrogen Bonding. Draw the structure showing hydrogen bonding in the	e following pure							
		liquids wherever possible.								
		(i) Hydrozine (ii) Methylalcohol (iii) Sulphuric acid	(6)							
	(c)	(c) Write a brief note on metallic bonding	(6)							
Q.3.	(a)	(a) Define enthalpy and discuss its relationship with internal energy.	(5)							
	(b)	(b) Give various definitions of Second Law of Thermodynamics.	(6)							
	(c)	· · · · · · · · · · · · · · · · · · ·	(6)							
	(d)	(d) Define and explain Thermochemistry.	(3)							
Q.4.	(a)	(a) What are various allotropic forms of Carbon. Give their structures and propertie	es. (6)							
	(b)	(b) Discuss role of Nitrogen Oxides in Environmental pollution.	(3)							
	(a)	(c) Given structures of (i) PF_5 (ii) PCl_6^- (iii) $\left(SiO_4^{4-}\right)$	$\begin{pmatrix} 1 \end{pmatrix}$							
	(c)	(c) Given structures of (i) FF_5 (ii) FCI_6 (iii) (SIO_4)	$\left(\frac{4}{2}\right)$							
			(1)							
	(d)	(d) How nitrogen is produced industrially.	$\left(6\frac{1}{2}\right)$							
Q.5.	(a)	(a) How Iron is produced on Industrial Scale using "Blast Furnance".	(8)							
Q.c.		(b) Discuss metallurgy of Aluminum.	(6)							
	(c)	•	(6)							
Q.6.		· ·	(2)							
Q.0.	(a) (b)									
	(0)	(b) Describe wet process for the manufacture of cement. What do you mean by s	(10+2)							
	(c)	(c) Give the manufacture of Ammonium Nitrate.	(6)							
0.7										
Q.7.	(a)	(a) Discuss the principle involved in MO Theory. How this theory is applied formation of a bond.	1 to explain the (10)							
	(b)		(8)							
	(c)	·	(2)							
Q.8.			(9)							
V.0.	(a)	(a) Discuss various arcorres of Acids and Dases.	(2)							

(ii) 0.33 M NaOH.

Write a note on Glass electrode.

(i) 0.037 M HCl

Calculate pH of the following solutions.

(b)

(c)

(7)

(4)