FEDERAL PUBLIC SERVICE COMMIS.

Q.No.3.

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2013

APPLIED MATHEMATICS, PAPER-II

TIME ALLOWED: THREE HOURS

MIS. 2013 MAXIMUM MARKS: 100

- NOTE: (i) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q. Paper.
 (ii) Attempt FIVE questions in all by selecting TWO questions from SECTION-A and ONE question from SECTION-B and TWO questions from SECTION-C ALL questions carry EQUAL marks.
 - (iii) Extra attempt of any question or any part of the attempted question will not be considered.
 - (iv) Use of Calculator is allowed.

SECTION-A

Q.No.1. Solve the following equations:

(a)
$$\frac{d^3 y}{dx^3} + \frac{dy}{dx} = Sec^2 x$$
 (10)

(b)
$$\frac{2dy}{dx} - \frac{x}{y} + x^3 Cos \ y = 0$$
 (10)

Q.No.2. (a) Find the power series solution of the differential equation (10)
$$(1-x^2)y'' - 2xy' + 2y = 0$$
, about the point $x = 0$.

(b) Solve
$$Z(x+y) \frac{\partial Z}{\partial x} + Z(x-y) \frac{\partial Z}{\partial y} = (x^2 + y^2)$$
. (10)

(a) Classify the following equations:
(i)
$$\frac{\partial^2 Z}{\partial x^2} + x^2 \frac{\partial^2 Z}{\partial y^2} - \frac{1}{x} \frac{\partial Z}{\partial x} = 0$$

(ii) $x^2 \frac{\partial^2 Z}{\partial x^2} + 2xy \frac{\partial^2 Z}{\partial x \partial y} + y^2 \frac{\partial^2 Z}{\partial y^2} = 4x^2$
(b) Solve: $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, -1 < x < 1, t > 0$
 $u(-1, t) = u(1, t); \frac{\partial u}{\partial x}(-1, t) = \frac{\partial u}{\partial x}(1, t)$ for $t > 0$
 $u(x, 0) = x+1, -1 < x < 1.$
(15)

SECTION-B

Q.No.4. (a) Highlight the difference between a vector and a tensor. What happens if we (5) permute the subscripts of a tensor?

(**b**) Transform
$$g^{ab} = \begin{pmatrix} 1 & 0 \\ 0 & 1/r^2 \end{pmatrix}$$
 into Cartesian coordinates. (15)

Page 1 of 2

www.StudentBounty.com Homework Help & Pastpapers

APPLIED MATHEMATICS, PAPER-II

 (a^2) Workout the Christoffel symbols for the metric tensor g_{ab} = Q.No.5. **(a)** 0

(a) Workout the Christoffel symbols for the metric tensor
$$g_{ab} = \begin{pmatrix} a^2 & 0 \\ 0 & a^2 \sin^2 \theta \end{pmatrix}$$

(b) Workout the two dimensional metric tensor for the coordinates p and q given by
 $p = (xy)^{\frac{1}{3}}, q = \left(\frac{x^2}{y}\right)^{\frac{1}{3}}$
(a) Solve the following system of equations by Jacobi iteration method: (10)

SECTION-C

Q.No.6.	(a)	Solve the following system of equations by Jacobi iteration method: 10x + y - 2z = 7.74			
		x + 12y + 3z = 39.66			
		3x + 4y + 15z = 54.8			
	(b)	Solve $Sinx = 1 + x^3$ Using Newton-Raphson method.	(10)		
Q.No.7.	(a)	Find the root of $xe^x = 3$ by regular falsi method correct to three decimal places.			
	(b)	Evaluate $\int_{0}^{10} \frac{dx}{1+x^2}$ using (5+5)	(10)		
		(i) Trapezoidal rule and			
		(ii) Simpson's rule.			
Q.No.8.	(a)	Find the real root of the equation $Cosx = 3x - 1$ correct to seven decimal places by the iterative method.			

Use Lagrange's interpolation formula to find the value of y when x = 10, if the (10) **(b)** values of *x* and *y* are given below:

X	5	6	9	11
Y	12	13	14	16
