FEDERAL PUBLIC SERVICE COMMISS

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17
 UNDER THE FEDERAL GOVERNMENT, 2011

APPLIED MATHEMATICS, PAPER-I

TIME ALLOWED: THREE HOURS
MAXIMUM MARKS: 100
NOTE: (i) Attempt FIVE questions in all by selecting THREE questions from SECTION - A and TWO questions from SECTION - B. All questions carry equal marks.
(ii) Use of Scientific Calculator is allowed.
(iii) Extra attempt of any question or any part of the attempted question will not be considered.

SECTION - A

Q.1. (a) Find the divergence and curl \vec{f} If $\vec{f}=2 x y z \hat{i}+\left(x^{2} z+2 y\right) \hat{j}+\left(x^{2} y+3 z^{2}\right) \hat{k}$
(b) Also find a function φ such that $\nabla \varphi=\vec{f}$
Q.2. (a) Find the volume $\iint_{R} \boldsymbol{x} \boldsymbol{y} \boldsymbol{d} \boldsymbol{A}$ where R is the region bounded by the line $\mathrm{y}=\mathrm{x}-1$ and the parabola $y^{2}=2 x+6$.
(b) Evaluate the following line intergral:
$\int_{c} y^{2} d x+x d y$ where $c=c_{2}$ is the line segment joining the points $(-5,-3)$ to $(0,2)$, and $\mathrm{c}=$ c_{2} is the arc of the parabola $x=4-y^{2}$.
Q.3. (a) Three forces P, Q and R act at a point parallel to the sides of a triangle ABC taken in the same order. Show that the magnitude of the resultant is
$\sqrt{p^{2}+Q^{2}+R^{2}-2 Q R \cos A-2 R P \cos B-2 P Q \cos C}$
(b) A hemispherical shell rests on a rough inclined plane whose angle of friction is λ. Show that the inclination of the plane base to the horizontal cannot be greater than $\arcsin (2 \sin \lambda)$
Q.4. (a) A uniform square lamina of side $2 a$ rests in a vertical plane with two of its sides in contact with two smooth pegs distant b apart and in the same horizontal line. Show that if $\frac{\theta}{\sqrt{2}}<\boldsymbol{b}<\boldsymbol{a}$, a non symmetric position of equilibrium is possible in which $b(\sin \theta+\cos \theta)=a$
(b) Find the centre of mass of a semi circular lamina of radius a whose density varies as the square of the distance from the centre.
Q.5. (a) Evaluate the integral $\int_{0}^{1} \int_{x^{2}}^{x}\left(x^{2}+y^{2}\right) d y d x$
also show that the order of integration is immaterial.
(b) Find the directional derivative of the function at the point P along z - axis

$$
f(x, y)=4 x z^{3}-3 x^{2} y^{2} z, P=(2,-1,2)
$$

SECTION - B

Q.6. (a) A particle is moving along the parabola $X^{2}=4 a y$ with constant speed v. Determine the tangential and the normal components of its acceleration when it reaches the point whose abscissa is $\sqrt{\mathbf{5}} \boldsymbol{a}$
(b) Find the distance travelled and the velocity attained by a particle moving in a straight line at any time t , if it starts from rest at $\mathrm{t}=0$ and is subject to an acceleration $\boldsymbol{t}^{2}+\sin t+\boldsymbol{e}^{\boldsymbol{t}}$
Q.7. (a) A particle moves in the $x y$ - plane under the influence of a force field which is parallel to the axis of y and varies as the distance from x - axis. Show that, if the force is repulsive, the path of the particle supposed not straight and then

$$
y=a \cosh n x+a \sinh n x
$$

where a and b are constants.
(b) Discuss the motion of a particle moving in a straight line with an acceleration X^{3}, where x is the distance of the particle from a fixed point O on the line, if it starts at $t=0$ from a point $x=c$ with the velocity $\mathrm{c}^{2} / \sqrt{2}$.
Q.8. (a) A battleship is steaming ahead with speed V and a gun is mounted on the battleship so as to point straight backwards and is set at angle of elevation $\boldsymbol{\alpha}$. If v_{0} is the speed of projection (relative to the gun) show that the range is $\frac{2 v_{0}}{g} \sin \alpha\left(v_{0} \cos \alpha-V\right)$
(b) Show that the law of force towards the pole of a particle describing the survey $r^{n}=a^{n} \cos \boldsymbol{n} \theta$ is given by $\boldsymbol{f}=\frac{(\boldsymbol{n}+1) \boldsymbol{h}^{2} \boldsymbol{a}^{2 n}}{\boldsymbol{r}^{2 n+3}}$ where \boldsymbol{h} is a constant.

