FEDERAL PUBLIC SERVICE COMMISSION **COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010**

APPLIED MATH, PAPER-II

TIME ALLOWED: 3 HOURS

MAXIMUM MARKS:100

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010 <u>APPLIED MATH, PAPER-II</u> TIME ALLOWED: 3 HOURS (i) Attempt FIVE question in all by selecting at least TWO questions from SECTION-A.		
TIME ALLOWED: 3 HOURS MAXIMUM MARKS:100		
NOTE:	 (i) Attempt FIVE question in all by selecting at least TWO questions from SECTION–ONE question from SECTION–B and TWO questions from SECTION–C. A questions carry EQUAL marks. (ii) Use of Scientific Calculator is allowed. 	
<u>SECTION – A</u>		
Q.1.	Solve the following equations: (a) $d^2y/dx^2 + 5 dy/dx + 6y = x$ (b) $d^2y/dx^2 + 5 y x = e^x$	(10) (10)
Q.2. (a) (b)	Derive Cauchy Rieman partial differential equations. Derive Lapace Equation.	(10) (10)
Q.3. (a) (b)	Solve: $(\partial^2 / \partial x^2 + \partial^2 / \partial x \partial y + \partial^2 / \partial y^2) u = 4 e^{3y}$ u'' + 6u' + 9=0; Given that $u(0)=2$ and $u'(0)=0$.	(10) (10)
Q.4. (a)	<u>SECTION – B</u> Discuss the following supported by examples: • Tensor,	(5)
(b)	 ∈_{ijk} ∈_{lmk} Scaler Fields for a continuously differentiable function f=f(x,y,z) Can we call a vector as Tensor, discuss. What is difference between a vector and a tensor? What happens if we permute the subscripts of a tensor? 	(5) (5) (5)
Q.5. (a) (b)	Discuss the simplest and efficient method of finding the inverse of a square matrix a_{ij} of order 3x3. Apply any efficient method to compute the inverse of the following matrix A:	(10) (10)
	$\mathbf{A} = \begin{bmatrix} 25 & 2 & 1 \\ 2 & 10 & 1 \\ 1 & 1 & 4 \end{bmatrix}$ SECTION – C	
Q.6. (a) (b)	Develop Gauss Siedal iterative Method for solving a linear system of equations A $x = b$, where A is the coefficient matrix. Apply Gauss Siedal iterative Method to solve the following equations: $25X_1 + 2X_2 + X_3 = 69$	(10) (10)
Q.7. (a)	$\begin{array}{rl} 2X_1+10X_2+X_3=63\\ X_1+&2X_2+X_3=43\\ \end{array}$ Derive Simpson's Rule for finding out the integral of a function f(x) from limits x=a to n=6 subintervals (i.e. steps).	(10)
(b)	Apply Simpson's Rule for n=6 to evaluate: $\int_{0}^{1} f(x) dx \text{where} f(x) = 1/(1+x2).$	(10)
Q.8. (a)	Derive Lagrange Interpolation Formula for 4 points:	(10)
(b)	A curve passes through the following points: $(0,1),(1,2),(2,5),(3,10)$. Apply this Lagrange Formula to interpolate the polynomial.	(10)

www.StudentBounty.com Homework Help & Pastpapers