(i) Attempt FIVE question in all by selecting at least TWO questions from SECTION-A, ONE question from SECTION-B and TWO questions from SECTION-C. All questions carry EQUAL marks.
(ii) Use of Scientific Calculator is allowed.

SECTION - A

Q.1. (a) Using method of variation of parameters, find the general solution of the differential equation.

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x} \tag{10}
\end{equation*}
$$

(b) Find the recurrence formula for the power series solution around $x=0$ for the differential equation

$$
\begin{equation*}
y^{\prime \prime}+x y=e^{x+1} \tag{10}
\end{equation*}
$$

Q.2. (a) Find the solution of the problem

$$
\begin{align*}
& u^{\prime \prime}+6 u^{\prime}+9 u=0 \tag{10}\\
& u(0)=2, \quad u^{\prime}(0)=0
\end{align*}
$$

(b) Find the integral curve of the equation

$$
\begin{equation*}
x z \frac{\partial z}{\partial x}+y z \frac{\partial z}{\partial y}=-\left(x^{2}+y^{2}\right) . \tag{10}
\end{equation*}
$$

Q.3. (a) Using method of separation of variables, solve

$$
\frac{\partial^{2} u}{\partial t^{2}}=900 \frac{\partial^{2} u}{\partial x^{2}} \quad\left\{\begin{array}{l}
0<x<2 \\
t>0
\end{array}\right.
$$

subject to the conditions

$$
\begin{aligned}
& u(0, t)=u(2, t)=0 \\
& u(x, 0)=\left.0 \quad \frac{\partial u}{\partial t}\right|_{t=0}=30 \sin 4 \pi x
\end{aligned}
$$

(b) Find the solution of

$$
\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=4 e^{3 y}+\cos x
$$

SECTION - B

Q.4. (a) Define alternating symbol $\in_{i j k}$ and Kronecker delta $\delta_{i j}$. Also prove that

$$
\begin{equation*}
\in_{i j k} \in_{l m k}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l} \tag{10}
\end{equation*}
$$

(b) Using the tensor notation, prove that

APPLIED MATH, PAPER-II

Q.5. (a) Show that the transformation matrix

$$
\mathbf{T}=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

is orthogonal and right-handed.
(b) Prove that

$$
l_{i k} l_{j k}=\delta_{i j}
$$

where $l_{i k}$ is the cosine of the angle between ith-axis of the system K^{\prime} and j th-axis of the system K.

SECTION - C

Q.6. (a) Use Newton's method to find the solution accurate to within 10^{-4} for the equation

$$
x^{3}-2 x^{2}-5=0, \quad[1,4]
$$

(b) Solve the following system of equations, using Gauss-Siedal iteration method

$$
\begin{align*}
& 4 x_{1}-x_{2}+x_{3}=8 \tag{10}\\
& 2 x_{1}+5 x_{2}+2 x_{3}=3, \\
& x_{1}+2 x_{2}+4 x_{3}=11
\end{align*}
$$

Q.7. (a) Approximate the following integral, using Simpson's $\frac{1}{3}$ rules

$$
\begin{equation*}
\int_{0}^{1} x^{2} e^{-x} d x \tag{10}
\end{equation*}
$$

(b) Approximate the following integral, using Trapezoidal rule

$$
\begin{equation*}
\int_{0}^{\pi / 4} e^{3 x} \sin 2 x d x \tag{10}
\end{equation*}
$$

Q.8. (a) The polynomial
$f(x)=230 x^{4}+18 x^{3}+9 x^{2}-221 x-9$
has one real zero in $[-1,0]$. Attempt approximate this zero to within 10^{-6}, using the Regula Falsi method.
(b) Using Lagrange interpolation, approximate.
$f(1.15)$, if $f(1)=1.684370, f(1.1)=1.949477, f(1.2)=2.199796, f(1.3)=2.439189$, $f(1.4)=2.670324$

