

Thursday 23 May 2019 – Afternoon LEVEL 3 CAMBRIDGE TECHNICAL IN APPLIED SCIENCE

05848/05849/05874 Unit 3: Scientific analysis and reporting

Time allowed: 2 hours

C342/1906

3 4 2 - 1 9 0

:

a ruler

You may use:

· a scientific or graphical calculator

Please write clea	arly in black ink.
Centre number	Candidate number
First name(s)	
Last name	
Date of Birth	D D M M Y Y Y

INSTRUCTIONS

- · Use black ink.
- · Answer all the questions.
- If additional answer space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.
- The Periodic Table is printed on the back page.

INFORMATION

- The total mark for this paper is 100.
- The marks for each question are shown in brackets [].
- This document consists of 24 pages.

FOR EXAMINER USE ONLY						
Question No Mark						
1	/16					
2	/12					
3	/16					
4	/15					
5	/13					
6	/10					
7	/18					
Total	100					

© OCR 2019 [Y/507/6150]

Answer **all** the questions.

1 A group of patients are anaemic.

They have regular blood tests to monitor the number of platelets in their blood.

The results of the blood tests are shown in **Table 1.1**.

Patient	Platelet count
1	105
2	92
3	81
4	86
5	110
6	98
7	101
8	92
9	92
10	83
11	102

Table 1.1

(a)	Identify the mode of the platelet count in Table 1	.1 .	
		1	[1]
(b)	Calculate the median of the platelet count in Tab	le 1.1.	
		1	[1]
(c)	Calculate the mean of the platelet count in Table	1.1.	
	Give your answer to 2 significant figures.		
	Show your working.		
		mean =	[2]

		3
(d)	The formula below can be data in Table 1.1 .	e used to calculate the standard deviation of the platelet count
	standard deviation $s = $	$\sqrt{\frac{1}{N-1}\sum_{i=1}^{N} (x_i - \overline{x})^2}$
	N is the number of blood	tests to measure the platelet count
	x_i is the platelet count	
	\overline{x} is the mean platelet co	ount calculated in (c) .
	Use the formula above to	calculate the standard deviation for the data in Table 1.1 .
	Give your answer to 1 de	ecimal place.
	Show your working.	
		standard deviation s =[6]
(-)	(i) Oalandata —	Standard deviation S –[0]
(e)	(i) Calculate \overline{x} + s.	
		\overline{x} + s =[1]
	(ii) Calculate \overline{x} - s.	
		\overline{Y}_{-} $S = $

(iii) Use your answers to (e)(i) and (e)(ii) to determine the percentage of platelet counts that are within one standard deviation of the mean.

Show your working.

percentage of platelet counts within one standard deviation =% [2]

© OCR 2019

1	(f)	The platelet	count in	Table 1	1 is in	n an	abbreviated	form
V		THE Plateict	COULT III	Table 1.	. I IO II	ıaıı	abbicialcu	101111

- A true platelet count is the number of platelets per microlitre of blood.
- A normal platelet count is 300 000 platelets per microlitre of blood.

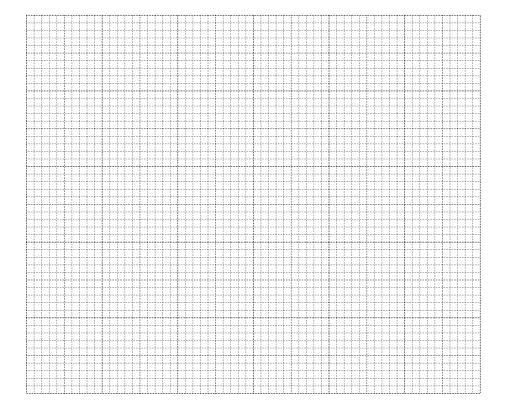
Calculate the number of platelets in one litre of normal blood.

1 microlitre = 0.000001 litres

Give your answer in standard form.

number of platelets in one litre of normal blood =[2]

BLANK PAGE


PLEASE DO NOT WRITE ON THIS PAGE

The concentration of sugar in the leaves of cereal plants varies with the time of day.Table 2.1 shows results from an experiment analysing sugar concentration in leaves.

Time of day (h)	04:00	08:00	12:00	16:00	20:00
Sugar concentration (percentage of dry leaf mass)	0.44	0.70	1.75	2.00	1.40

Table 2.1

(a) Plot a graph of the results in **Table 2.1** and draw a curve of best fit.

[4]

(b)	Use	your graph to estimate the sugar concentration at 10:00.
		sugar concentration = percentage of dry leaf mass [1]
(c)	Use	your graph to predict the sugar concentration at 22:00.
		sugar concentration = percentage of dry leaf mass [1]
(d)	(i)	Calculate the gradient of the graph at 08:00. Give the units.
		Show your working.
		gradient = units = [4]
	(ii)	Describe how the gradient of the graph changes between 04:00 and 10:00.
		[1]
	(iii)	Describe how the gradient of the graph changes between 12:00 and 16:00.

.....[1]

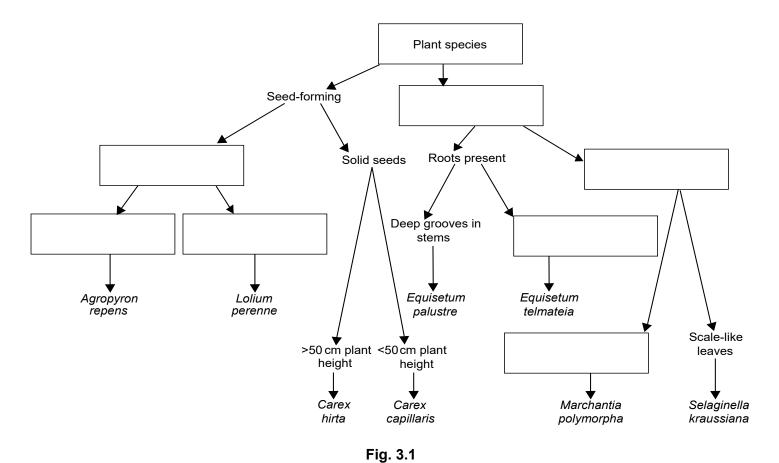

3 Keys can be used for the identification of living organisms.

 Table 3.1 shows some characteristics of native British plants.

Plant species	Form of reproduction	Presence of roots	Plant height (cm)	Other features
Selaginella kraussiana	Spore	No	15	Scale-like leaves
Equisetum telmateia	Spore	Yes	40	Fine grooves in stems
Equisetum palustre	Spore	Yes	60	Deep grooves in stems
Marchantia polymorpha	Spore	No	10	No true leaves
Lolium perenne	Seed	Yes	90	Hollow seeds, rounded stems
Agropyron repens	Seed	Yes	120	Hollow seeds, rounded stems
Carex capillaris	Seed	Yes	20	Solid seeds, 3-sided stems
Carex hirta	Seed	Yes	70	Solid seeds, 3-sided stems

Table 3.1

(a) Fig. 3.1 shows a key to identify the different plant species in Table 3.1.
Use the data in Table 3.1 to complete the blank spaces in the key.
Some of the key has already been completed.

, - - - -

[7]

(b) Plants are often known by their common names.

Horsetails, liverworts and mosses are the common names for three types of plant.

They produce spores during reproduction.

An example of each plant is shown in the photographs in Fig. 3.2.

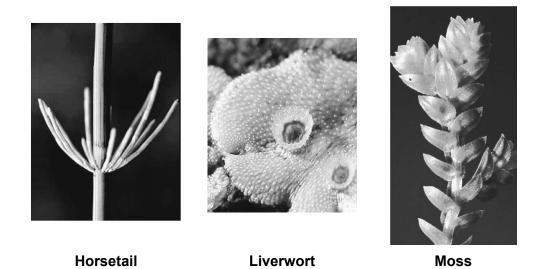


Fig. 3.2

(i) Draw a line from the Latin name to the common name to identify the plants.Use the information in Table 3.1, Fig. 3.1 and Fig. 3.2 to help you.

Latin name Equisetum palustre Horsetail Marchantia polymorpha Moss Selaginella kraussiana Liverwort [2] (ii) Fig. 3.2 shows one type of primary data. State another source of primary data to be used in the classification of plants.

(c)	(i)	Define the term binomial nomenclature .
		[2]
	(ii)	Suggest why binomial nomenclature is used in the classification of plants.
		TA1

4 Beth is investigating the time period for a simple pendulum (**Fig. 4.1**) to swing from left to right.

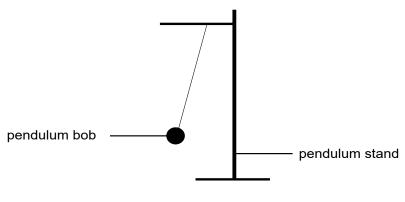


Fig. 4.1

She records the time taken for the heavy pendulum bob to swing from a set point.

She repeats the swing four times for each of four experiments, A, B, C and D.

The results of her four experiments are shown in **Table 4.1**.

	Time p	period (s) for	a simple pen	dulum
Experiment		Rep		
	1	2	3	4
Α	48.5	53.0	49.5	51.0
В	45.6	47.0	45.0	46.5
С	45.5	46.2	54.5	48.5
D	50.5	51.0	50.0	49.5

Table 4.1

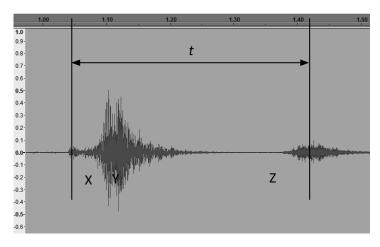
(a) The **true value** of the period of the pendulum is 50.5 s.

(i)	Which experiment, A, B, C or D, is precise and accurate?	
		[1]
(ii)	Which experiment, A , B , C or D , is precise but not accurate?	
		[1]
(iii)	Which experiment, A, B, C or D, is accurate but not precise?	
		[1]
(iv)	Which experiment, A, B, C or D, is not precise or accurate?	
		[1]

(b) Determine the range of the times recorded in Experiment ${\bf C}.$

	Sho	ow your working.	
		range =	s [2]
(c)	Sug	ggest what Beth should specify to make her investigation repeatable .	
			[2]
(d)	Beth	ne was measured in this investigation. h started and stopped a stopwatch. s introduced a source of error.	
	(i)	Describe the cause of this error.	[1]
	(ii)	What type of error is caused when a person starts and stops a stopwatch? Tick (\checkmark) one box.	
		Measurement error	
		Random error	
		Systematic error	[1]
	(iii)	Explain your answer to d(ii) .	
			[1]

(e)	The valu	e reading on a stopwatch lies between a m ue.	inimum time value and a maximum time										
	The	e manufacturer states that the stopwatch h	as an accuracy of 0.3%.										
	The stopwatch shows a reading of 1000.0 s.												
	(i)	ne values.											
			minimum =s										
			maximum =										
	(ii)	What type of error is due to the accuracy	of the stopwatch?										
		Tick (✓) one box.											
		Measurement error											
		Random error											
		Systematic error											


5 Amir is carrying out an investigation using voice recognition software to display sounds as wave forms on a computer screen.

He asks two of his friends to say a single-syllable word into a microphone.

Each wave form is recorded as a trace on the computer screen.

Fig. 5.1 shows the trace recorded for each of Amir's friends.

Trace 1

Trace 2

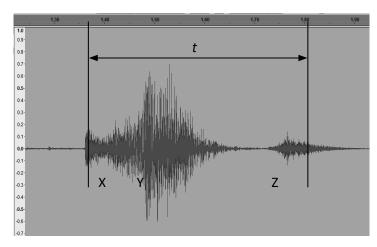
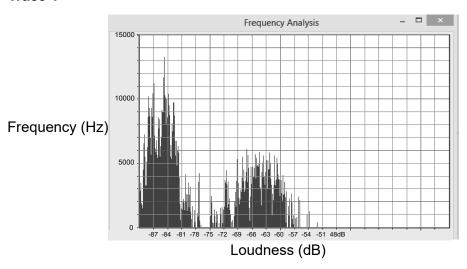


Fig. 5.1

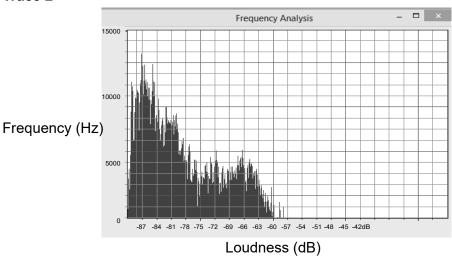
(a) The horizontal axis of each trace shows the time taken to speak the single-syllable word. Amir concludes that the same word was spoken by both of his friends.

Do you agree with Amir's conclusion?

Use traces 1 and 2 to explain your answer.


(b) The voice recognition software used by Amir also gives a frequency analysis of each trace.

Frequency, in Hertz (Hz), is plotted against the loudness of the sound, in decibels (dB).


Amir recorded the frequency of the sounds produced by three different friends on a computer screen when they said the same word.

The results of the frequency analysis are shown as three traces in Fig. 5.2.

Trace 1

Trace 2

Trace 3

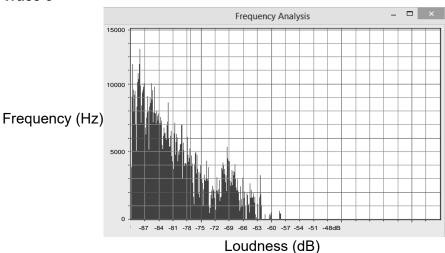


Fig. 5.2

	e data shown in Fig. 5.1 and Fig. 5.2 are primary data.
 The	
	e data shown in Fig. 5.1 and Fig. 5.2 are primary data.
	e data shown in Fig. 5.1 and Fig. 5.2 are primary data. Describe one feature of primary and secondary data.
	e data shown in Fig. 5.1 and Fig. 5.2 are primary data. Describe one feature of primary and secondary data.
	e data shown in Fig. 5.1 and Fig. 5.2 are primary data. Describe one feature of primary and secondary data. Primary data
	e data shown in Fig. 5.1 and Fig. 5.2 are primary data. Describe one feature of primary and secondary data. Primary data Secondary data
	Describe one feature of primary and secondary data. Primary data Secondary data
(i)	Describe one feature of primary and secondary data. Primary data Secondary data
(i)	Describe one feature of primary and secondary data. Primary data Secondary data Suggest three advantages of using secondary data.

Scientific findings are shared with a wide range of people.Scientific authors can be either public information scientists or scientific journalists.

(a) For each type of author in **Table 6.1** put a tick (✓) in the correct box to indicate if they are public information scientists or scientific journalists.

Type of author	Public information scientist	Scientific journalist
University scientist		
Scientific book authors		
Government scientific agencies		
Newspaper article authors		
Scientific companies		
TV programme producers		
Blog author		

Table 6.1	
	[7]

(b)	When writing a scientific report it is important to consider the audience that the report written for.	is
	Suggest three different audiences that scientific reports can be written for.	
	1	
	2	
	3	
		[31

© OCR 2019

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

7 Iron tablets are used to treat people with a low level of iron in their blood.

The active ingredient in iron tablets is iron(II) sulfate, FeSO₄.

- (a) Susan carries out a titration to check the mass of iron in an iron tablet. She follows three key steps.
 - **Step 1** The iron tablet is ground to a fine powder using a pestle and mortar and transferred to a conical flask.
 - **Step 2** 100 cm³ of dilute sulfuric acid is added to the powder, and then the flask is shaken until the iron tablet dissolves.
 - **Step 3** A few drops of indicator are added and the solution is titrated with $0.010 \text{ mol dm}^{-3}$ potassium dichromate.

Susan records the initial and final burette readings as part of the titration, and calculates the volume needed to reach the end-point.

She obtains the results shown in **Table 7.1**.

Initial burette reading (cm³)	0.10
Final burette reading (cm³)	19.00
Volume of 0.010 mol dm ⁻³ potassium dichromate added (cm ³)	18.90

Table 7.1

(i) Calculate the number of moles of potassium dichromate required to react with the iron in the tablet.

Use the equation: number of moles = $\frac{\text{concentration (mol dm}^{-3}) \times \text{volume (cm}^{3})}{1000}$

number of moles =[2]

(ii) In the titration, 6 moles of iron(II) ions react with 1 mole of dichromate ions.

Calculate the number of moles of iron in the tablet.

	Use your answer from (a)(i).
	number of moles =[1]
(iii)	The relative atomic mass of iron is 55.8.
	Calculate the mass, in mg, of iron in the tablet.
	Use the equation: mass (g) = number of moles x relative atomic mass
	Use your answer from (a)(ii).
	Give your answer to 3 significant figures.
	mass of iron = mg [4]
(iv)	The bottle of iron tablets states that each tablet contains 65 mg.
	Calculate the error in Susan's value from a(iii) as a percentage of the value shown on the bottle.
	percentage error =% [2]
(v)	Susan considers using a spectrophotometer to determine the mass of iron in the tablet.
	Suggest one advantage and one disadvantage of using a spectrophotometer rather than completing a titration.
	Advantage
	Disadvantage
	[2]

(b)		romatography can be used to purify (prepare) a chemical for further use or to quantify amount of a chemical present.												
	(i)	Complete the sentences below using words from this list. Each word may be used once, more than once or not at all.												
		elution protonometry scraping radiology nephrolog												
		Preparative samples can be obtained from column chromatography by												
		Preparative san	nples from thin laye	er chromatography	(TLC) can be	obtained by								
				or										
						[3]								
	(ii)	Densitometry caplate.	an be used to quan	tify the amount of s	substance sepa	arated on a TLC								
		Complete the se	entences below usi	ng words from this	list.									
		Each word may	be used once, mo	re than once or not	at all.									
		scanned	intensities	less	protracted	cyclons								
		greater	calibration	wavelengths	similar									

END OF QUESTION PAPER

ADDITIONAL ANSWER SPACE

If additional answer space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s) – for example 1(a) or 2(b).

The Periodic Table of the Elements

(0)	18	2 He	4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	첫	krypton 83.8	54	×	xenon 131.3	98	R	radon			
(/	•		17	6	ш	fluorine 19.0	17	10	chlorine 35.5	35	Ą	bromine 79.9	53	-	iodine 126.9	85	¥	astatine			
(9)			16	8	0	oxygen 16.0	16	တ	sulfur 32.1	34	Se	selenium 79.0	52	Тe	tellurium 127.6	84	S	polonium	116	۲	livermorium
(2)			15	7	z	nitrogen 14.0	15	_ ∶	phosphorus 31.0	33	As	arsenic 74.9	51	Sp	antimony 121.8	83	ē	bismuth 209.0			
(4)			14	9	ပ	carbon 12.0	14	S	silicon 28.1	32	g	germanium 72.6	20	S	tin 118.7	82	P	lead 207.2	114	F1	flerovium
(3)			13	2	Ф	boron 10.8	13	ΑI	aluminium 27.0	31	Ga	gallium 69.7	49	드	indium 114.8	81	11	thallium 204.4			
									12	30	Zu	zinc 65.4	48	ၓ	cadmium 112.4	80	Ę	mercury 200.6	112	ວົ	copernicium
									1	29	ر د	copper 63.5	47	Ag	sliver 107.9	79	Αu	gold 197.0	111	Rg	roentgenium
									10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	¥	platinum 195.1	110	Ds	darmstadtium
									6	27	ပိ	cobalt 58.9	45	各	rhodium 102.9	2.2	<u>-</u>	iridium 192.2	109	¥	meitnerium
									80	56	Pe	iron 55.8	44	Ru	ruthenium 101.1	9/	os	osmium 190.2	108	£	hassium
									7	25	Ē	manganese 54.9	43	ဥ	technetium	75	Re	rhenium 186.2	107	В	pohrium
		er	nass						9	24	ပံ	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium
	Key	atomic number Symbol	relative atomic mass						2	23	>	vanadium 50.9	41	Q.	niobium 92.9	73	Та	tantalum 180.9	105	음	dubnium
		atc	relativ						4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	±	hafnium 178.5	104	꿆	rutherfordium
•									ო	21	လွ	scandium 45.0	39	>	yttrium 88.9		27-71	lanthanoids		89–103	actinoids
(2)			2	4	Be	beryllium 9.0	12	Mg	nagnesium 24.3	20	ça	calcium 40.1	38	Š	strontium 87.6	26	Ba	barium 137.3	88	Ra	radium
(1)	-	← I	nydrogen 1.0	3	=	lithium 6.9	11	Na	sodium 23.0	19	¥	potassium 39.1	37	&	rubidium 85.5	22	ဒ	caesium 132.9	87	È	francium
																			_		

71 Lu lutetium 175.0	103 Lr Iawrencium
70 Yb ytterbium 173.0	102 No nobelium
69 Tm thulium 168.9	101 Md mendelevium
68 Er erbium 167.3	100 Fm fermium
67 Ho holmium 164.9	99 Es einsteinium
66 Dy dysprosium 162.5	98 Cf californium
65 Tb terbium 158.9	97 Bk berkelium
64 Gd gadolinium 157.2	96 Cm curium
63 Eu europium 152.0	95 Am americium
62 Sm samarium 150.4	94 Pu plutonium
61 Pm promethium 144.9	93 Np neptunium
60 Nd neodymium 144.2	92 U uranium 238.1
59 Pr praseodymium 140.9	91 Pa protactinium
58 Ce certum 140.1	90 Th thorium 232.0
57 La lanthanum 138.9	89 Ac actinium

Copyright Information:
OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination

series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, OCR (Oxford Cambridge and RSA Examinations), The Triangle Building, Shaftesbury Road, Cambridge

CB2 8EA.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a