Thursday 16 May 2019 – Afternoon # LEVEL 3 CAMBRIDGE TECHNICAL IN APPLIED SCIENCE 05847/05848/05849/05874/05879 Unit 2: Laboratory techniques Time allowed: 2 hours C341/1906 #### You must have: - a ruler - · the Data Sheet (Insert) #### You may use: · a scientific or graphical calculator | Please write clea | arly in | black | ink. | | | | | | | | | |-------------------|---------|-------|------|---|---|---|---|-----|---------------|--|--| | Centre number | | | | | | | | Can | didate number | | | | First name(s) | | | | | | | | | | | | | Last name | | | | | | | | | | | | | Date of Birth | D | D | M | M | Υ | Υ | Υ | Υ | | | | #### **INSTRUCTIONS** - · Use black ink. - Answer all the questions. - · Write your answer to each question in the space provided. - If additional answer space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown. - The Periodic Table is printed on the back page. #### **INFORMATION** - The total mark for this paper is 90. - The marks for each question are shown in brackets []. - · This document consists of 24 pages. | | AMINER
ONLY | |-------------|----------------| | Question No | Mark | | 1 | /18 | | 2 | /16 | | 3 | /14 | | 4 | /14 | | 5 | /14 | | 6 | /14 | | Total | /90 | ### Answer all the questions. 1 Athletes can be tested for banned substances to ensure they are not cheating by taking samples of their blood. The blood samples are analysed in a laboratory. | (a) | are allowed to work in the laboratory. | |-----|---| | | [1] | | (b) | Hazard warning signs are displayed in laboratories. Identify the meaning of each sign shown below. Write your answer below each sign. | | | | **(c)** A number of hazards may be experienced when taking and analysing blood samples. State **two** of these hazards and suggest precautions to be taken by the technicians to reduce the risks. Complete the table. | | Hazard | Precaution | |---|--------|------------| | 1 | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | [4] [2] (d) Blood samples taken from the athletes are "booked in" at the laboratory and labelled correctly so that they are not mixed up. | | (i) | The name of the athlete is not stated on the blood sample label. | | |-----|------|--|-----| | | | Suggest why it is important to ensure that the name of the athlete is not stated or blood sample. | na | | | | | | | | (ii) | Suggest three pieces of information that must be recorded for each sample. | | | | | 1 | | | | | 2 | | | | | 3 | [3] | | (e) | (i) | Technicians must calibrate scientific instruments used in the laboratory. | | | | | Describe how thermometers can be calibrated. | [4] | (ii) **Table 1.1** and **Table 1.2** shows the results of a stopwatch calibration test carried out by the technicians. Two types of stopwatch were tested: analogue and digital. The stopwatches were tested by the direct comparison method for exactly 180 seconds and then for exactly 600 seconds. Each test was carried out four times. | | 180 s stopwatch test (min:s) Repeats | | | | | | |----------------------|---------------------------------------|---------|---------|---------|--|--| | Type of
stopwatch | | | | | | | | Stopwaten | 1 | 2 | 3 | 4 | | | | Analogue | 3:01 | 3:02 | 3:01 | 2:59 | | | | Digital | 3:01.44 | 3:01.55 | 2:59.80 | 3:00.88 | | | Table 1.1 | | 600 s stopwatch test (min:s) Repeats | | | | | | |-------------------|---------------------------------------|---------|----------|----------|--|--| | Type of stopwatch | | | | | | | | | 1 | 2 | 3 | 4 | | | | Analogue | 9:58 | 10:03 | 10:02 | 10:03 | | | | Digital | 10:01.30 | 9:59.92 | 10:01.11 | 10:00.17 | | | Table 1.2 A student has a work placement at a laboratory. She carries out an experiment to investigate the rate of reaction between magnesium and hydrochloric acid. The student plans to measure the volume of gas produced every 30 seconds over a period of 10 minutes. | Suggest | which | stopwatch | the | student | should | use | |---------|-------|-----------|-----|---------|---------|------| | Cuyycsi | ** | Stopwaton | เมา | JUGGETT | JIIOGIG | asc. | | Justify your choice using the information in Table 1.1 and Table 1.2 . | | |--|-----| | | | | | • • | | | | | | | | | | | | | | | • • | | | | | | | | | ٠. | | | | | | • | | r | 21 | # **BLANK PAGE** PLEASE DO NOT WRITE ON THIS PAGE 2 A biochemical company analyses the chemical composition of substances in food. The composition of amino acids in a diet supplement is determined using thin-layer chromatography (TLC). **Table 2.1** shows the R_r values of some amino acids in a mobile phase using solvent A. | Amino acid | R _r value in solvent A | |------------|-----------------------------------| | Alanine | 0.53 | | Arginine | 0.13 | | Threonine | 0.53 | | Tyrosine | 0.92 | Table 2.1 Fig. 2.1 is a chromatogram of the amino acids in Table 2.1. Fig. 2.1 | (a) | Suggest why a pencil is used to mark the base line on the solid phase. | |-----|--| | | | | | | | | r | | (b) | Give two reasons why gloves must be worn when analysing amino acids by TLC. | |-----|---| | | 1 | | | 2 [2] | | (c) | Which spot in Fig. 2.1 is arginine? | | (0) | Draw X next to the correct spot in Fig. 2.1 . | | | [1] | | (d) | Use a ruler to measure the distance that tyrosine moved during chromatography. | | | Distance = mm [1] | | (e) | Explain how the $R_{\rm f}$ value of the spot labelled Y is approximately 0.53. | | | | | | | | | | | | | | | [3] | | (f) | Suggest why it is not possible to separate alanine from threonine in the TLC plate shown in Fig. 2.1 . | | | [1] | | (g) | State two alternative chromatography methods that could be used to determine the amounts of each amino acid in the diet supplement. | | | 1 | | | 2 | | | [2] | | (h) | A m | ass spectrometer can be coupled to chromatography equipment. | |-----|------|---| | | (i) | Give an advantage of using a mass spectrometer when coupled to chromatography equipment. | | | | | | | | [1] | | | (ii) | Describe the principles of how a mass spectrometer works. | FA | 3 Cleanezi Ltd manufacture and sell household cleaning products. | One of their p | products, Flushisafe, is a toilet cleaner that contain | ns phosphoric acid. | |----------------------|---|---| | | of phosphoric acid in Flushisafe is measured by tit
odium hydroxide. | tration with a 0.5 mol dm ⁻³ | | Phosphoric a | acid is a strong acid. | | | | wo descriptions apply to sodium hydroxide? two boxes. | | | Acid | | | | Alkali | | | | Base | | | | Organio | c solvent | | | Salt | | [1] | | (b) (i) Use | e the Periodic Table to calculate the molar mass of | | | | Molar mass of NaOH = | g mol ⁻¹
[1] | | | culate the mass of sodium hydroxide needed to m
ution of sodium hydroxide. | ake 1 dm³ of a 0.5 mol dm⁻³ | | | Mass = | ·g
[2] | - (c) Table 3.1 shows the results of three titrations of 10.0 cm³ samples of a batch of Flushisafe. - (i) Calculate the titres of 0.5 mol dm⁻³ **sodium hydroxide** in each titration. Write your answers in **Table 3.1**. | | Rough
titration | Accurate titration 1 | Accurate titration 2 | |-------------------------------|--------------------|----------------------|----------------------| | Final burette reading (cm³) | 31.70 | 30.55 | 30.75 | | Initial burette reading (cm³) | 0.8 | 0.10 | 0.20 | | Titre (cm³) | | | | Table 3.1 [1] (ii) Describe how you could ensure the accuracy of the burette measurements.[1] (d) Suggest why a measuring cylinder would not be a suitable piece of equipment to measure the 10.0 cm³ batches of Flushisafe.[1] (e) Name a suitable indicator for the titration in (c), and state the colour change. Indicator..... Colour change [2] The balanced equation for the reaction between phosphoric acid and sodium hydroxide is: (f) $H_3PO_4 + 3NaOH \rightarrow Na_3PO_4 + 3H_2O$ The titration results can be used to find the concentration of phosphoric acid in Flushisafe. (i) Use the accurate titration results in **Table 3.1** to calculate the mean titre. | (ii) | Use your answer to f(i) to calculate the mean number of moles of NaOH used in t titration. | he | |-------|--|-------------------| | | Use the equation: number of moles = $\underline{\text{concentration (mol dm}^{-3})}$ x mean titre (cm ³) | | | | 1000 | Mean number of moles of NaOH = | mol
[1] | | (iii) | In the reaction between phosphoric acid and sodium hydroxide, 1 mole of $\rm H_3PO_4$ reacts with 3 moles of NaOH. | | | | Use the reacting ratio to calculate the number of moles of $\rm H_3PO_4$ in 10.0 cm³ of Flushisafe. | Number of moles of H ₃ PO ₄ = | mol
[1] | | (iv) | Calculate the concentration, in mol dm ⁻³ , of the phosphoric acid in Flushisafe. Give your answer to 3 significant figures. | Concentration of phosphoric acid = mol o | ^{5–} mb | | | | [2] | | | | | # **BLANK PAGE** # PLEASE DO NOT WRITE ON THIS PAGE - 4 A greyish brown powder was found in a laboratory, but its container did not have a label. - (a) A series of tests was carried out on the powder to find out what it was. - When a flame test was carried out on a sample of the powder, the substance burned with a blue-green flame. - A second sample of the powder was then dissolved in water, and the solution was divided into two portions. - Barium chloride solution was added to one portion, and silver nitrate solution was added to the other. The results of the tests for the second sample are shown in **Table 4.1**. | Test | Observation | |-----------------------------|-------------------| | Addition of barium chloride | No change | | Addition of silver nitrate | Cream precipitate | Table 4.1 | | (i) | Name the unknown substance in the greyish brown powder. | | |-----|------|---|---------| | | | | .[1] | | | (ii) | Write the formulae of the two ions present in the unknown substance. | | | | | | .[2] | | (b) | | e three reasons why ion chromatography is used to analyse drinking water, rather using the tests described in (a) . | | | | 1 | | | | | 2 | | | | | 3 | |
[31 | | (c) | Lead is a toxic metal, but many old houses have plumbing made from lead pipes. | | |-----|--|------| | | It is important that tap water in old houses is tested to ensure that the lead content in water is below the safe level. | the | | | ICP-AES is one test that can be done to measure the amount of lead in the water. | | | | Identify the term ICP. | | | | Tick (✓) one box. | | | | Induced Covalent Polar | | | | Inductively Coupled Plasma | | | | Interactive Covalent Plasma | | | | Ionically Covalent Polar | | | | Ion Cross Plasma | ra 1 | | | | [1] | (d) **Table 4.2** shows ICP-AES results for standard lead solutions, and for a sample of tap water taken from an old house. | Lead concentration in standard lead solutions (µg dm ⁻³) | Intensity (arbitrary units) | |--|-----------------------------| | 0 | 0.00 | | 5 | 0.32 | | 10 | 0.68 | | 15 | 1.00 | | 20 | 1.30 | | | | | Tap water sample | 0.50 | Table 4.2 (i) Use the results shown in **Table 4.2** to plot a calibration graph of the **standard lead solutions** and draw a line of best fit. [5] (ii) Use the calibration graph you plotted to determine the concentration, in μg dm⁻³, of lead in the tap water. Show on the graph how you arrived at your answer. Concentration of lead in tap water = µg dm⁻³ [2] 5 An epidermal strip of onion epithelial cells is obtained. A stain is added to the onion epithelial cells. The cells are then photographed when magnified under a light microscope. Fig. 5.1 shows a photograph of the magnified onion epithelial cells. Fig. 5.1 | (a) | Sug | Suggest why a stain was added to the onion epithelial cells. | | | |-----|-----|---|------|--| | | | | .[1] | | | (b) | | e photograph shown in Fig. 5.1 was obtained using a x10 eyepiece lens and x60 ective lens. | | | | | (i) | Calculate the magnification used in Fig. 5.1 . | | | Magnification = x [1] | (ii) | A pointer is used in the ey | ve piece of the microscope to show the location of cell A | ۹. | |-------|------------------------------|---|--------------| | | Use a ruler to measure the | e magnified length, in mm, of cell A . | | | | | | | | | | Length of cell A = | mm | | | | Length of Cell A | [1] | | (iii) | Calculate the actual lengtl | h of cell A . | | | (, | _ | ation = measured size ÷ actual size | | | | Show your working. | | | | | , c | Actual length of cell A = | | | | | | [2] | | (iv) | | of the onion epithelial cells can be clearly seen in Fig. | 5.1 ? | | | Tick (✓) three boxes. | | | | | Cell wall | | | | | Chloroplast | | | | | | | | | | Cytoplasm | | | | | Mitochondrion | | | | | | | | | | Nucleus | | | | | Plasma membrane | | | | | Vacuole | | | | | ¥acu0i c | | | © OCR 2019 Turn over [3] (c) Light microscopes are also used to observe the key features of cells sampled from human patients. | structures such as organs within human patients. | |--| | Compare the advantages and disadvantages of using ultrasound and X-ray scanners to view internal structures of a human patient, and explain how this makes them suitable for viewing different structures. | - **6** Agrobacterium is a bacterium that can be used by plant biotechnology companies to produce genetically engineered crops. - (a) Fig. 6.1 is a photograph of *Agrobacterium* streaked onto an agar plate. The streaking technique involves the use of a metal wire inoculation loop. Fig. 6.1 | (i) | Give two reasons why bacteria are streaked onto an agar plate in this way. | |-------|---| | | 1 | | | 2 [2] | | (ii) | Suggest why the inoculation loop must be flamed immediately before inoculating the plate. | | | [1] | | (iii) | Give two reasons why the loop must be cooled before streaking. | | | 1 | | | | | | 2 | | | [2] | | iv) Suggest | why the loop must be flamed in between each phase of streaking. | |------------------------------|--| | | | |) State wh | at you would expect to see if the plate had become contaminated. | | | | | is possible t
s cabbages. | o add genes from <i>Agrobacterium</i> to tissue cultures of plants such | | he cabbage
genetically e | plants grown from the tissue cultures are now transformed ngineered). | | he transform | ed cabbage plants can be cloned. | | ne procedur | e for cloning the plants can involve five steps as shown below. | | ne steps are | not in the correct order. | | Step | Action | | Α | Place each explant onto a plate of sterile agar. | | В | Incubate the explants in the light and at a suitable temperature. | | С | Dip each explant in sterilising fluid. | | D | Use sterile forceps to remove a small piece of tissue (explant) from a cabbage leaf. | | E | Observe the agar plates each day to check the growth of new cloned plants. | | /rite a letter | for one step in each box to show the correct order. | | | | | | | [4] (b) (c) A technician working with one biotechnology company clones some plant material as shown in Fig. 6.2 and Fig. 6.3. The explants in Fig. 6.3 are contaminated. Fig. 6.2 Fig. 6.3 Aseptic techniques are often carried out in controlled airflow cabinets. Suggest **three** precautions that should be taken to maintain aseptic techniques in controlled airflow (laminar airflow) cabinets. | | | | | [31 | |---|------|------|------|-----| 1 |
 |
 |
 | | #### **END OF QUESTION PAPER** ### **ADDITIONAL ANSWER SPACE** If additional answer space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s) – for example 1(e) or 5(c). # The Periodic Table of the Elements | (0) | 18 | 2
He | helium
4.0 | 10 | Se | neon
20.2 | 18 | Ar | argon
39.9 | 36 | 궃 | krypton
83.8 | 54 | Xe | xenon
131.3 | 98 | R | radon | | | | |-----|-----|----------------------|----------------------|----|----------|------------------|----|-----|--------------------|----|--------|-----------------------|----|--------|--------------------|----|-------|-------------------|-----|--------|---------------| | (2) | '• | | 17 | 6 | ш | fluorine
19.0 | 17 | 10 | chlorine
35.5 | 35 | Ā | bromine
79.9 | 53 | Ι | lodine
126.9 | 85 | Αŧ | astatine | | | | | (9) | | | 16 | 8 | 0 | oxygen
16.0 | 16 | တ | sulfur
32.1 | 34 | Se | selenium
79.0 | 52 | Те | tellurium
127.6 | 84 | S | polonium | 116 | ۲ | livermorium | | (2) | | | 15 | 7 | z | nitrogen
14.0 | 15 | ₾ ; | phosphorus
31.0 | 33 | As | arsenic
74.9 | 51 | Sp | antimony
121.8 | 83 | ē | bismuth
209.0 | | | | | (4) | | | 14 | 9 | ပ | carbon
12.0 | 14 | :ō | silicon
28.1 | 32 | ge | germanium
72.6 | 20 | Sn | tin
118.7 | 82 | В | lead
207.2 | 114 | Εĩ | flerovium | | (3) | | | 13 | 9 | ω | boron
10.8 | 13 | Αl | aluminium
27.0 | 31 | Ga | gallium
69.7 | 49 | 드 | indium
114.8 | 81 | 11 | thallium
204.4 | | | | | | | | • | | | | | | 12 | 30 | Zu | zinc
65.4 | 48 | ၓ | cadmium
112.4 | 80 | Ę | mercury
200.6 | 112 | ភ | copernicium | | | | | | | | | | | 7 | 29 | D
C | copper
63.5 | 47 | Ag | silver
107.9 | 26 | Ρn | gold
197.0 | 111 | Rg | roentgenium | | | | | | | | | | | 9 | 28 | Z | nickel
58.7 | 46 | Pd | palladium
106.4 | 78 | Ŧ | platinum
195.1 | 110 | Ds | darmstadtium | | | | | | | | | | | 6 | 27 | ပိ | cobalt
58.9 | 45 | 뫈 | rhodium
102.9 | 77 | 1 | iridium
192.2 | 109 | ¥ | meitnerium | | | | | | | | | | | 80 | 56 | Fe | iron
55.8 | 44 | Ru | ruthenium
101.1 | 9/ | SO | osmium
190.2 | 108 | Hs | hassium | | | | | | | | | | | 7 | 25 | Ē | manganese
54.9 | 43 | ဥ | technetium | 75 | Re | rhenium
186.2 | 107 | В | pohrium | | | | oer. | mass | | | | | | 9 | 24 | ပ် | chromium
52.0 | 42 | ě | molybdenum
95.9 | 74 | > | tungsten
183.8 | 106 | Sg | seaborgium | | | Key | atomic number Symbol | relative atomic mass | | | | | | Ŋ | 23 | > | vanadium
50.9 | 41 | Q
Q | niobium
92.9 | 73 | Та | tantalum
180.9 | 105 | С | dubnium | | | | atc | relativ | | | | | | 4 | 22 | F | titanium
47.9 | 40 | Zr | zirconium
91.2 | 72 | Ξ | hafnium
178.5 | 104 | ች | rutherfordium | | • | | | | | | | | | က | 21 | လွ | scandium
45.0 | 39 | > | yttrium
88.9 | | 57-71 | lanthanoids | 400 | 09-103 | actinoids | | (2) | - | | 2 | 4 | Be | beryllium
9.0 | 12 | Mg | magnesium
24.3 | 20 | Sa | calcium
40.1 | 38 | Š | strontium
87.6 | 99 | Ba | barium
137.3 | 88 | Ra | radium | | (5) | 1 | - I | hydrogen
1.0 | 3 | ' | lithium
6.9 | 11 | Na | sodium
23.0 | 19 | × | potassium
39.1 | 37 | 8 | rubidium
85.5 | 22 | S | caesium
132.9 | 87 | Ŧ | francium | | | | | | | | | | | | _ | _ | | | _ | | _ | _ | | | | _ | | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | |-----------------------------|-------------------------------------|---------------------------------|------------------------------------|------------------------------|------------------------------|-----------|-----------------|------------------------------|------------|--------------------------------|-----------------------------|---------------------------------|------------------------------|--------------------------------| | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | | lanthanum | cerium | praseodymium | neodymium | promethium | samarium | europium | gadolinium | terbium | dysprosium | holmium | erbium | thullum | ytterbium | lutetium | | 138.9 | 140.1 | 140.9 | 144.2 | 144.9 | 150.4 | 152.0 | 157.2 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.0 | 175.0 | | 89
Ac
actinium | 90
Th
thorium
232.0 | 91
Pa
protactinium | 92
U
uranium
238.1 | 93
Np
neptunium | 94
Pu
plutonium | 95
Am | 96
Cm | 97
Bk
berkelium | 98
Cf | 99
Es
einsteinium | 100
Fm
fermium | 101
Md
mendelevium | 102
No
nobelium | 103
Lr
lawrencium | Copyright Information: OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, OCR (Oxford Cambridge and RSA Examinations), The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.