CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2013 series

1347 MATHEMATICS (STATISTICS WITH PURE MATHEMATICS)

1347/02

Paper 2 (Statistics), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper				
			Pre-U – May/June 2013				1347	02	
1				r		1			
1	(i)	Mean = 2.068 million Median = 2.035 million Values not very different, so no evidence of skew, fairly symmetric		B1 2.035 B1 [3] Symm		2.035 or Symmet	or 2068000, accept 2.07 or 2070000 or 2035000, accept 2.04 or 2040000 etric or equivalent conclusion about tribution of increases		
	(ii)	Interquartile range = $2.52 - 1.35 = 1.17$ Either: $2.52 + 1.5 \times 1.17 = 4.275$		M1 M1		IQR calculated correctly, or implied from subsequent working $1.5 \times$ their IQR or 1.755 or 1.29 ÷ their IQI			
		Or: (3.81 – 2.52) ÷ 1.17 = 1.103		A1		A valid and correct calculation			
		3.81 is less than $1.5 \times IQR$ above the upper quartile, so it is not an outlier		B1	[4]	Explanation of how this shows that 3.81 not an outlier			
	(iii)	The recent increases are all quite small compared with the earlier ones.			[1]	Early values larger than later ones			
2	(i)	1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5				in both c	he ten pairs (allow orders or as a two- not implied		
			3 4 5 6 7 8 9 0.1 0.1 0.2 0.2 0.2 0.1 0.1	B1 M1 M1 A1	[5]	Total can take values 3,4,5,6,7,8,9 (only) Correct prob (or ft <i>their</i> list) for 3 or 9 Correct prob (or ft <i>their</i> list) for 5, 6 or 7 All probabilities correct			
	(ii)	$= \hat{6}$ $3^2 \times 0.1 +$ Variance	on = $3 \times 0.1 + 4 \times 0.1 + 5 \times 0.2 +$ - $4^2 \times 0.1 + 5^2 \times 0.2 + = 39$ = $39 - 36 = 3$ deviation = $\sqrt{3} = 1.732$	M1 A1 M1 A1 B1	[5]	6.0 or 6 39 seen 3, from	mmetry, method for or valid method for valid method seen 73 or better (ft fro	or variance	
3	(i)	$P(robin) = X = numb X \sim B(4, -1)$	per of children who saw a robin	B1		Paramet	ers 4 and 0.87 see	n or implied	
			$= (0.13)^4 + 4(0.87)(0.13)^3$ = 0.00793117	M1 A1	[3]		calculation of P(X)		
	(ii)	where the	ability of a robin is 0.87 in the places ese four children live	B1		p = 0.87 or constant probability			
		'The gare	gardens are independent	B1		Independ same are	dence / random / r ca	not all from the	
		populatio	$n' \Rightarrow SR2$		[2]				

	Page 3		Mark Scheme		Syllabus 1347	Paper 02					
			Pre-U – May/June	Pre-U – May/June 2013							
	(iii)	H ₀ : P(see house sparrows) = 0.65 H ₁ : P(see house sparrows) < 0.65 X = no of families who see house sparrows Assuming H ₀ : $X \sim B(20, 0.65)$ Using tables, either: P(X < 5) = 0.0003 or cv = 7				'Probability of seeing house sparrows' < 0.65 or < 65%					
						subseque	20, 0.65), or implied from ent working r 7 from correct method				
		0.0003 < 0.01 or 0.0003 < 1% or 7 > 5		B1		Correct of	Correct comparison seen				
		-	(accept H ₁)	probability or cv			ity or cv				
		probabilit	supports the claim that the ty of seeing house sparrows in city ess than 65%	A1	[7]	Correct conclusion in words					
4 ((i)	$S_{xx} = 417$	$1 - \frac{(143)^2}{5} = 81.2$	B1		81.2					
		$S_{yy} = 432$	$-\frac{(46)^2}{5} = 8.8$	B1		8.8					
		$S_{xy} = 1342$	$2 - \frac{143 \times 46}{5} = 26.4$	B1		26.4					
		$r = \frac{26.4}{\sqrt{81.2}}$	$\frac{4}{8.8} = 0.9876 \ (0.988)$	M1		Calculating <i>r</i> from their S_{xx} , S_{yy} and S_{xy} (numerical working or their <i>r</i> value corr to 3 sf or better)					
		<i>r</i> is very sloping) l	near 1, so a good fit to (an upward ine	A1	[5]	Drawing a valid conclusion that a linear fit is appropriate the second s		· –			
	(ii)	$b = \frac{26.4}{81.2} =$	0.3251	M1		Calculating <i>b</i> from <i>their</i> S_{xx} , S_{xy} (calculating seen or 0.32 to 0.33)					
		$a = \frac{46}{5} - 0$	$.3251 \times \frac{143}{5}$	M1		Calculat or implie		y and <i>their b</i> (seen			
		= 9.2 -	$0.3251 \times 28.6 = -0.0985$	A1		-0.10 to	-0.09 for <i>a</i> (without wrong				
		y = 0.325	x - 0.0985	M1			rect with coeffici	ficients 0.32 to 0.33			
		$x = 20 \Rightarrow$	$\hat{y} = 6.40 \text{ or } 6$	A1			-0.10 to -0.09 used correctly to 6.5 (before rounding) or integer				
		-	tion beyond range of data nple / only based on one sample	B1 B1	[7]	Extrapol Any vali	ation d objection				
5 ((i)	H ₀ : popul	ation mean = 0.2	B1		'population mean' or μ (but not just					
		H ₁ : popul	ation mean > 0.2	B1	[2]	'mean') > 0.2					
	(ii)		fon time g H ₀ : $X \sim N(0.2, 0.001)$ $45 \times \sqrt{0.001} = 0.252$	M1 A1		Use of 1 cv = 0.23					
		H ₀ is true 0.252 it p and $\mu > 0$	ot expect a reaction time > 0.252 if . If the reaction time is greater than rovides evidence that Sam is right .2, otherwise there is insufficient to reject H ₀ .	B1	[3]	Explaini	ng how (<i>their</i>) cv	v is used			

	Page 4		Mark Scheme			Syllabus	Paper		
			Pre-U – May/June 2	1347	02				
	(iii)	P(Type II error) = $P(X < 0.252)$ where $X \sim N(0.24, 0.001)$ = $P(Z < 0.379) = 0.6477$			[3]	$X \sim N(0.24, 0.001)$ used or implied P(X < or < cv) 0.647 to 0.648 as final answer without wrong working, cao			
6	(i)	H ₀ : No association between attractiveness of men and their wives H ₁ : Some association		B1	[1]	H ₀ : No association (allow independence) H ₁ : Association, or equivalent			
	(ii)	$\frac{18}{50} \times \frac{16}{50} \times 50$ or $18 \times 16 \div 50 = 5.76$		M1 A1	[2]	$18 \times 16, 288, 0.32, 0.36$ or 0.1152 seen Correct method (answer given in question)			
	(iii)	$\frac{(10-5.76)^2}{5.76} = \frac{4.24^2}{5.76} = \frac{17.9776}{5.76} = 3.12$			[2]	$(10-5.76)^2$ ÷ 5.76			
	(iv)	Critical v 38.24 > 1 More attr attractive	1) $(3 - 1) = 4$ degrees of freedom alue = 13.28 $3.28 \Rightarrow$ reject H ₀ (accept H ₁) active men usually have more wives and less attractive men have ctive wives.	M1 A1 M1 A1	[4]	4 df 13.28 Reject H_0 or equivalent, correct for their cv A correct conclusion in words			
7	Rank 2 4 5		oss 8 15 17 10 21 24 32 6 19 46 2 4 5 3 7 8 9 1 6 10 N N N N N N N E E E	B1		Ranks co	orrect (at least for	E)	
			$n E = 17 (R_m = 17) + 1) - R_m = 16$	M1 M1 A1		$R_m = 17$ m(m+n+) W = 16,			
			distribution $\alpha = 5\%$ rent distributionstwo-sided						
	m = 3, n =		$=7 \Rightarrow cv = 7$	B1		cv = 7			
		$16 > 7 \Rightarrow \text{accept H}_0$ Insufficient evidence to claim that there is a difference in the weight losses.		M1 A1	[7]	Correct	H_0 (ft <i>their W</i> and conclusion in wor for <i>their W</i> and <i>c</i>	ds, from correct	

Pa	ge 5	Mark Scheme				Syllabus	Paper	
		Pre-U – May/June 2		1347	02			
8 (i)		2144	B1		134			
o (1)	(i) Estimate μ using $\bar{x} = \frac{2144}{16} = 134$ Estimate σ^2 using $s^2 = \frac{8640}{15} = 576$			[3]	134 8640 ÷ either 15 or 16, 540, 24 or 23.2 576			
(ii)	(ii) Population distribution is normal and unknown population variance				Normal and σ^2 unknown			
	Small sample			[2]	Sample size			
(iii)	15 degrees of freedom $\Rightarrow t = 2.131$				n-1 = 15 2.131			
	$134 \pm 2.131 \times \sqrt{(576/16)} = 134 \pm 2.131 \times 6 = (121.2, 146.8)$				576/16 seen or implied Correct method for <i>their t</i> or <i>z</i> value, condone omission of 16			
	-(121.2, 140.8)			[5]	Confidence limits correct (3 sf or better)			
(iv)	$\bar{X} \sim N(145, 100)$				N(145, 100)			
	$P(\bar{X} < 125) = P(Z < \frac{125 - 145}{10})$				Correct method for their distribution			
	P(Z < -2) = 1 - 0.9772 = 0.0228			[4]	Z value - 0.0228	-2 or +2		