MARK SCHEME for the May/June 2013 series

1347 MATHEMATICS (STATISTICS WITH PURE MATHEMATICS)

1347/01
Paper 1 (Pure Mathematics), maximum raw mark 65

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	1347	01

1	(i)	$1-14 x+84 x^{2}$	M1 A1 [2]	1 and correct method for another term All correct, ignore extra terms	
	(ii)	Substitute $x=1 / 35$		M1	Subs reasonable x into their answer
Get $117 / 175$	A1	Or extract fractional equivalent			

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	1347	01

6 (i) (ii)	$\begin{aligned} & \sqrt{4^{2}+2^{2}} \\ & =2 \sqrt{5} \end{aligned}$ $A C=2 \sqrt{5}-3$ $\frac{1}{2} A D \times(2 \sqrt{5}-3)=22$ $\begin{aligned} & A D=\frac{44}{2 \sqrt{5}-3}=\frac{44(2 \sqrt{5}+3)}{11} \\ & =12+8 \sqrt{5} \end{aligned}$	M1 A1 B1 $\sqrt{ }$ M1 M1 A1V A1 [5]	Use Pythagoras Allow $\sqrt{20}$ or exact equivalent Their (i) - 3 seen [if circle equation used, need to reject $C^{\prime}(-6 \div \sqrt{5}, 3-6 \div \sqrt{5})$] Use Δ and make $A D$ subject of formula Multiply by conjugate of $q \sqrt{r}-p$ Correct on their (i) if form $q \sqrt{r}-p$ used CAO, aef provided of form $a+b \sqrt{c}$ with a, b, c integer
7	$\begin{aligned} & \int_{1}^{4} x^{1 / 2}+\frac{2}{x} \mathrm{~d} x=\left[\frac{2 x^{3 / 2}}{3}+2 \ln x\right]_{1}^{4} \\ & {[=7.439]} \end{aligned}$ Area of trapezium $=8.25$ Difference 0.811 (3 SF)	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ [6]	Attempt to integrate curve, limits 1, 4 One term correct Fully correct indefinite integral Method for trapezium, e.g. integration [y-coords 3 and 2.5] 8.25 seen or implied 0.811 or better, final answer +ve $\left[=\frac{43}{12}-2 \ln 4\right]$
8 (i) (ii) (iii)	Velocity $20(+\mathrm{ve} x)$ Initial position $\begin{aligned} & (20 t-250)^{2}+(15 t-500)^{2} \\ & 625 t^{2}-25000 t+312500 \quad \text { AG } \\ & 625\left[t^{2}-40 t+500\right] \\ & =625\left[(t-20)^{2}+100\right] \end{aligned}$ Minimum distance $\sqrt{625 \times 100}$ $=250$ Time $t=20$	B1 B1 [2] M1 A1 [2] M1 A1 M1 A1 $\sqrt{ }$ A1 $\sqrt{ }$ [5]	One fact about velocity One fact about position Use Pythagoras; correctly simplify to AG, at least one intermediate line Take out factor and halve t term Fully correct, allow 625 omitted Use their b $\sqrt{625 \times \text { their } b}$ their a

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	1347	01

9 (i)	$y^{\prime}=2 x-3$	M1	Differentiate correctly
	$=3$	A1	Obtain $m=3$
	$x=3-3 y$	M1	Use $\frac{-1}{m}$ and method for finding q
		A1 [4]	Answer, ae simplified f
	$y=(3-3 y)^{2}-3(3-3 y)$	M1	Subs their x or y into quadratic
	or $x^{2}-3 x=1-\frac{x}{3}$		
	$10 y=9 y^{2}$ or $3 x^{2}-8 x-3=0$	A1	This equation, ae simplified form
	$\left(-\frac{1}{3}, \frac{10}{9}\right)$	A1	Get $\frac{10}{9}$ or $-\frac{1}{3}$ (with or without others)
		A1 [4]	Both coordinates, no others
(iii)	(a) $(5,0),\left(\frac{5}{3}, \frac{10}{9}\right)$	$\text { M1 A1 } \sqrt{ }$	Coords translated $\pm 2, x$ or y : M1
	(b) $(3,0),\left(-\frac{1}{3},-\frac{10}{9}\right)$	M1 A1V	Coords reflected, either axis: M1
	(c) $(6,0),\left(-\frac{2}{3}, \frac{20}{9}\right)$	M1 A1V [6]	$\times 2$ or $\div 2$, any combination: M1 All $\sqrt{ }$ on their (ii)
$\begin{array}{rrr}10 & \text { (i) } \\ & \\ & \text { (ii) }\end{array}$	$\frac{\mathrm{d}^{2} P}{\mathrm{~d} v^{2}}=6 v^{2}+3-\frac{18}{v^{2}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Differentiate Fully correct
	$=0 \text { at } 6 v^{4}+3 v^{2}-18=0$	M1	Polynomial and equate to 0
	$3\left(2 v^{2}-3\right)\left(v^{2}+2\right)=0$		Method for solving quadratic in v^{2}
	$v^{2}=\frac{3}{2}$	A1	$\frac{3}{2}$ seen or implied
	$v=1.22$ (474...)	A1	$v=1.22$ or better and nothing else
	$P=22.0$ (454)	A1	$P=22.0$ or better
(iii)	$\frac{\mathrm{d}^{2} P}{\mathrm{~d} v^{2}}=12 v+\frac{36}{v^{3}} \cdot 0 \therefore \text { minimum }$	B1 [1]	Correctly show minimum, needn't justify ". 0 ", can use numerical gradients or other complete argument

