MAXIMUM MARK: $\mathbf{8 0}$

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
The following abbreviations may be used in a mark scheme:
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
aef Any equivalent form
art Answers rounding to
cwo Correct working only (emphasising that there must be no incorrect working in the solution)
ft Follow through from previous error is allowed
o.e. Or equivalent

1	(i)	$S_{x x}=1939552-\frac{(4412)^{2}}{13}=442187$ (to nearest integer)	B1
		$S_{y y}=605147-\frac{(2387)^{2}}{13}=166857$ (to nearest integer)	B1
		$S_{x y}=1074848-\frac{4412 \times 2387}{13}=264737$ (to nearest integer)	B1
		$r=\frac{264737}{\sqrt{442187 \times 166857}}=0.975(0.9746)$	
		Calculating r from their $S_{x x}, S_{y y}$ and $S_{x y}$	M1
		r is near 1 , so a good fit to an upward sloping line Drawing a valid conclusion (confirming that a linear fit is appropriate, as stated in question)	A1
	(ii)	$b=\frac{264737}{442187}=0.599(0.5987)$ Calculating b from their $S_{x x}$ and $S_{x y}$	M1
		$a=\frac{2387}{13}-0.5987 \times \frac{4412}{13}$	M1
		Calculating a from $\Sigma x, \Sigma y$ and their b $=183.6-0.5987 \times 339.4=-19.6$	
		$y=0.599 x-19.6$	A1
		Line correct with coefficients to 3sf or better $x=2203 \Rightarrow \hat{y}=1300($ From their line (± 2))	B1
	(iii)	Extrapolation beyond range of data	B1
		Any valid objection	B1
		Small sample / only based on one sample	
		Sampling method not known / not random sampling London is not typical / London 'is different'	
2	(i)	Median $=30 \mathrm{mpg}$ CAO	B1
		Quartiles $=34 \mathrm{mpg}$ and $23 \mathrm{mpg} \quad$ (Accept 33 to 35 and 20 to 24)	B1
		$\mathrm{IQR}=11 \mathrm{mpg}$ (their IQR calculated)	M1
		Outliers have $\mathrm{mpg}<6.5$ or >50.5	A1
		\Rightarrow Toyota Prius	B1
	(ii)	Using median and quartile values appropriately to deduce non-normal	B1
		e.g. The difference between 23 and 30 is much greater than the difference between 30 and 34 ; this suggests that the distribution is not symmetric.	

5	(i)	$x=47 \rightarrow z=0.667 ; x=51 \rightarrow z=2.0(z$ values may be implied $)$	B1
		$\mathrm{P}(47<X \leqslant 51)=0.9772-0.7477$ (may be implied)	M1
		Expected frequency $=0.2295 \times 100=22.95 \mathrm{AG}$	A1
	(ii)	Merge classes in tails to make expected frequencies at least 5	B1
		Weight <43 43-45 45-47 >47	
		$\begin{array}{lllll}\text { Observed frequency } & 32 & 24 & 30 & 14\end{array}$	
		$\begin{array}{llllll}\text { Expected frequency } & 25.23 & 24.77 & 24.77 & 25.23\end{array}$	
		$(\mathrm{O}-\mathrm{E})^{2} / \mathrm{E}$ 1.82 0.02 1.10 5.00 Substantially correct calculation of X^{2} (with or without merging)	M1
		X^{2} calculated $=$ art 7.94 CAO	A1
		H_{0} : $\mathrm{N}(45,9)$ distribution	B1
		H_{1} : some other distribution	
		From tables, critical value $=7.815 \mathrm{CAO}$	B1
		Reject H_{0}	B1
		Data is not consistent with a $\mathrm{N}(45,9)$ distribution	
	(iii)	$v=n-1=4-1=3$	B1
		No need to reduce degrees of freedom for parameters as not estimated from sample data	
	(iv) (a)(b)	Variance cannot be estimated, midpoints cannot be found for first and last classes since boundaries are not known	B1
		Sign test or binomial test or equivalent (e.g. test proportion that are below 45)	B1
		$\begin{array}{ll} \mathrm{H}_{0}: \text { median }=45 & \alpha=5 \% \\ \mathrm{H}_{1}: \text { median }=45 & \text { two-tailed test } \end{array}$	
		$Y=$ number of chicks with weight $\leqslant 45 \mathrm{~g}$ Assuming $\mathrm{H}_{0}, Y \sim \mathrm{~B}(100,0.5)$	M1
		Approximate by $\mathrm{N}(50,25)$ Critical values are $50 \pm 1.96 \times 5=50 \pm 9.8$ $=[40.2,59.8]$	A1
		Observed $y=56$ (or 44 above)	
		Accept H_{0}	B1
		Data are consistent with a distribution with median $=45$. No evidence that median is not 45	

BLANK PAGE

