

Cambridge International Examinations Cambridge Pre-U Certificate

MATHEMATICS (STATISTICS WITH PURE MATHEMATICS) (SHORT COURSE)

Paper 1 Pure Mathematics SPECIMEN MARK SCHEME For Examination from 2016

1 hour 45 minutes

www.tiremepapers.com

1347/01

MAXIMUM MARK: 65

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

This document consists of 4 printed pages.

© UCLES 2013

[Turn over

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.

The following abbreviations may be used in a mark scheme:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- aef Any equivalent form
- art Answers rounding to
- cwo Correct working only (emphasising that there must be no incorrect working in the solution)
- ft Follow through from previous error is allowed
- o.e. Or equivalent

		2	1
1	(i)	$[y = (x - 3)^2 - 11]$	
		$ \begin{array}{c} a = 3 \\ b = 11 \end{array} $	B1 B1
		b = 11	DI
	(ii)	-11 (<i>their</i> - <i>b</i>)	B1ft
		x = 3 (their a)	B1ft
	(iii)	Translation 3 in x-direction,	M1
	(III)	11 in negative y-direction (ft on <i>a</i> , <i>b</i>)	Alft
2	(i)	One correct term	M1
		$y' = 10x - 3x^2$	A1
	(ii)	Substitute $x = 4$ to get numerical answer $m = -8$	M1
		Through (4, 9)	B1
		y = -8x + 41	A1
3		At least one ${}^{n}C_{r}$, x^{5} and 2^{5}	M1
		Both expansions fully correct	A1
		$64 + 160x^2 + 20x^4$ (Fully simplified answer, can imply M1 A1 cwo)	Al
4		Integrate to get at least 1 correct term Both <i>x</i> terms correct and $+ c$ or equivalent	M1 A1
		Both x terms correct and $+c$ or equivalent Use $x = 2, y = 19$ to find c	M1
		$y = 2x^2 + 3x + 5$ (Allow "c = 5" if $y = 2x^2 + 3x + c$ seen)	Al
5		One law of logs correctly applied	M1
		Another law correctly applied $\begin{pmatrix} (n+1)(n-1) \end{pmatrix}$	A1
		$\ln\left(\frac{(x+1)(x-1)}{x^2}\right)$ aef	A1
6		Differentiate at least one term correctly	M1
		$\frac{dC}{dC} = 800 - 20000t^{-2}$ set	
		$\frac{dC}{dt} = 800 - 20000t^{-2}$ aef	A1
		= 0 and solve to get $t = 5$ (or -5 , ignore)	A1
		Substitute into C equation to get (\pounds) 8000 and no other solution	A1
		Correctly show minimum, cwo $\frac{1}{2}C$	B1
		E.g. $\frac{d^2 C}{dt^2} = 40000t^{-3} > 0$	
7	(i)	xy = 12000, x + y = 230	
		Both equations, allow $2x + 2y = 460$	B1
		Algebraic method for solution	M1
		x(230-x) = 12000	A 1
		$x^{2} - 230x + 12000 = 0$ 150 or 80 (At least one solution)	A1 A1
		Dimensions 150×80 CAO	AI Al
	(ii)	Quadratic equation with P or equiv (e.g. $q = P/2$)	M1
		Correct quad = 0, e.g. $2x^2 - Px + 24000 = 0$	A1
		$q^2 \ge 4 \times 12000$ $P = 2q \ge 2\sqrt{48000} = 80\sqrt{30}$	M1
		$P = 2q \ge 2.48000 = 80.050$ Correct quad = 0, e.g. $2x^2 - Px + 24000 = 0$	A1
		Correctly obtain AG, $P \ge 80\sqrt{30}$, "cannot be less than" must be justified	

	Г		
8	(i)	Turn into $x^4 - 10x^2 + 9 = 0$ o.e. Solve quadratic in x^2	B1 M1
		$(x^2 - 1)(x^2 - 9) = 0$	1 V1 1
		x = 1, 3, AG	A1
		-1, -3 and nothing else	A1
	(**)	Attempt to integrate function limits 1 and 2	N/1
	(ii)	Attempt to integrate function, limits 1 and 3	M1
		$\int_{-\infty}^{3} \frac{10}{x} - \frac{9}{x^3} dx$	
		(Correct indefinite integral, allow $(9/2)x^{-2}$)	
			D.(
		$= \left[10\ln x + \frac{9}{2x^2} \right]_{1}^{3}$	B1
		$\int_{1}^{3} x dx = 4, \text{ e.g. trapezium}$	M1
		Difference = $10\ln 3 - 8$	A1
		Final answer, any <i>exact</i> equivalent, not negative	A1
9	(a)	$15+15 \times \frac{2 \times 4}{5} + + 15 \times \frac{5 \times 1}{5}$	
		Evidence for at least 2 correct terms, added	M1
		= 105 CAO	A1
		15	D1
	(b)(i)	a = 15 b = 1.04 (Allow 1.040001 or more SF)	B1 B1
			DI
	(ii)	$\ln(20/15) \div \ln(1.04)$ Use ln correctly, <i>their a</i> , <i>b</i>	M1
		= 7.33 or 7 years 4 months or better	A1
		[T&I: 7.33 or 7y 4m or better: B2, else B0]	
	(iii)	$15e^{(\ln 1.04)t}$	M1
	()	or $c = their a, k = ln (their b)$ or decimals to 3 SF	M1
		Correctly differentiate ce^{kt} , numerical c, k	M1
		In range $[0.784, 0.785]$ or $\times 1000$ or $20k$ ft	A1ft
10	(i)	(4, 5) (Must be simplified)	B1
	(ii)	Grad $AC = 2$,	B1
	(11)	so grad $BD = -\frac{1}{2} (-1/(\text{their } m_{AC}))$	M1
		$y = -\frac{1}{2}x + 7$ aef	A1
	(iii)	Solve simultaneously (Needs correct substitution/elimination) P(2, 2)	M1
		B(-2, 8) D(10, 2)	A1 A1
		(Allow A1 A0 for two correct coordinates)	AI
	(iv)	Use Pythagoras once correctly	M1
		$AC = \sqrt{4^2 + 8^2}$ [= $\sqrt{80}$], $BM = \sqrt{6^2 + 3^2}$ [= $\sqrt{45}$] Both answers exact (can be implied)	A1 M1
		implied) Multiply answers, allow $\times 2$ or $\times \frac{1}{2}$	A1
		= 60 cwo	4 1 1