CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2013 series

1347 MATHEMATICS (STATISTICS WITH PURE MATHEMATICS)

1347/01

Paper 1 (Pure Mathematics), maximum raw mark 65

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme				Syllabus	Paper	
			Pre-U	– May/J	1347	01			
1	(i)	$1 - 14x + 84x^2$		M1 A1 [2]		1 and correct method for another term All correct, ignore extra terms			
	(ii)	Substitute <i>x</i> = 1/35 Get 117/175		M1		Subs reasonable x into their answer			
				A1	[2]	Or extract fractional equivalent			
2	(i)		M1 A1		Decreasing curve, not below <i>x</i> -axis Correct including apparently asymptotic to axis to right, allow $x \ge 0$ only				
					[2]				
	(ii)	$\ln y = \ln 2 + 0.7x$		M1		Law of logs used co	orrectly once		
		$x = \frac{1}{\ln 0}$	$\frac{1}{7}(\ln y - \ln 2)$	A1	[2]	Final answer, aef, a			
3	(i)	338 350		B1	[1]				
	(ii)	1 353 40	00	B1√	[1]	(i) × 4, f.t. from (i)	1		
	(iii)	338 450		B1√	[1]	(i) + 100, f.t. from (ı (i)		
4	(i)	<i>A</i> = 27		B1		27 seen anywhere	seen anywhere		
	(ii)	$k = \frac{1}{2} \ln k$	$k = \frac{1}{2} \ln 1.5$ or 0.203			Rearrange and take	ln		
				A1	[3]	Answer, aeef or a.r.	t. 0.203		
		$12 \times \left(\frac{2}{3}\right)$	$2 \times \left(\frac{2}{3}\right)^2$			Or substitute into fo	ormula		
		$= 5\frac{1}{3}$		A1	[2]	Answer, aef, allow	5.33 or better		
5	(i)			M1		Use $b^2 - 4ac < 0$			
		$k^2 - 12k$	< 0	A1		This inequality, ae s	<i>simplified</i> f		
		$k^{2} - 12k$ $k(k - 12)$ $0 < k < 0$) < 0	M1		Method for solution	n (not "< 0, < 12")	")	
		0 < k <	12	A2	[5]	One error, A1 only			

	Pag	je 3	Mark Scheme				Syllabus	Paper	
			Pre-U – N	/lay/June	8	1347	01		
6	(i)	$\sqrt{4^2 + 2^2}$ $= 2\sqrt{5}$				Use Pythagoras			
		$=2\sqrt{5}$	$=2\sqrt{5}$			Allow $\sqrt{20}$ or exact equivalent			
	(ii)	AC = 2	$\sqrt{5} - 3$	B1√		<i>Their</i> (i) – 3 seen [if circle equation used, need to			
				re		reject $C'(-6 \div \sqrt{5}, 3-6 \div \sqrt{5})]$			
		$\frac{1}{4}$ 4D×	$(2\sqrt{5}-3) - 22$	M1 Use Δ and make Al			ΔAD subject of for	rmula	
		$\frac{1}{2}AD \times (2\sqrt{5} - 3) = 22$ $AD = \frac{44}{2\sqrt{5} - 3} = \frac{44(2\sqrt{5} + 3)}{11}$		\square Use \triangle and ma			e AD subject of it	nnuna	
		$AA = AA(2\sqrt{5}+2)$				_			
		$AD = \frac{11}{2\sqrt{5} - 3} = \frac{11(2\sqrt{5} + 3)}{11}$		M1		Multiply by conjugate of $q\sqrt{r} - p$			
	=12 +			A1 A1		Correct on <i>their</i> (i) if form $q\sqrt{r} - p$ used CAO, aef provided of form $a + b\sqrt{c}$ with a, b, c			
		12 - 0	V 5		[5]	integer	where of torm $a + b \sqrt{c}$ with a, b, c		
7			2 5 5 5 7 4	N/1					
7		$\int_{1}^{4} x^{1/2} +$	$\frac{2}{x}dx = \left[\frac{2x^{3/2}}{3} + 2\ln x\right]^4$	M1 B1		Attempt to integrate curve, limits 1, 4 One term correct			
				B1		Fully correct indefinite integral			
		[=7.439] Area of	trapezium = 8.25	M1		Method for trapezium, e.g. integration [<i>y</i> -coords 3 and 2.5]			
		I		A1 8.25 seen or implied		-			
		Differen	ce 0.811 (3 SF)	Al Al			final answer +ve		
					[6]	$=\frac{43}{12}-2\ln 4$			
8	(i)	Velocity	x = 20 (+ve x)	B1		One fact about	velocity		
		Initial po	osition	B1	[2]	One fact about	position		
	(ii)	(20t-25)	$(50)^2 + (15t - 500)^2$	M1		Use Pythagoras	; correctly simpli	fy to AG , at	
			$25\ 000t + 312\ 500$ AG	A1	[2]	least one interm	nediate line		
	(iii)	$625[t^2 -$	40t + 500]	M1		Take out factor	and halve <i>t</i> term		
		= 625[(<i>t</i>	$(-20)^2 + 100]$	A1		Fully correct, al	llow 625 omitted		
		Minimu	m distance $\sqrt{625 \times 100}$	M1		Use <i>their b</i>			
		= 250		A1√		$\sqrt{625 \times their b}$			
		Time	- 20	A 1/	[2]	thein -			
		Time $t =$	- 20	A1√	[5]	their a			

	Page 4		Mark Scheme				Syllabus	Paper	
			Pre-U – May/June 2013				1347	01	
9	(i) $y'=2x-3$		M1 Differentiate		correctly				
		= 3		A1		Obtain $m = 3$			
		x = 3 - 3	ŷy	M1		Use $\frac{-1}{m}$ and method for finding q			
				A1	[4]	Answer, ae simplified f			
			$(3y)^2 - 3(3 - 3y)$	M1		Subs <i>their x</i> or	y into quadratic		
		or $x^2 - 3$	$x = 1 - \frac{x}{3}$						
		10y = 9y	x^2 or $3x^2 - 8x - 3 = 0$	A1		This equation,	ae simplified form		
		$\left(-\frac{1}{3},\frac{1}{9}\right)$	$\left(\frac{0}{2}\right)$	A1		Get $\frac{10}{9}$ or $-\frac{1}{3}$	(with or without	others)	
				A1	[4]	Both coordinat	es, no others		
			$), \left(\frac{5}{3}, \frac{10}{9}\right)$	M1 A1√	A1 $$ Coords transla		ted ± 2 , x or y: M1		
		(b) (3, 0), $\left(-\frac{1}{3}, -\frac{10}{9}\right)$	M1 A1√ Coo		Coords reflected	flected, either axis: M1		
		(c) (6, 0)	$0, \left(-\frac{2}{3}, \frac{20}{9}\right)$	M1 A1√	[6]	× 2 or ÷ 2, any All $$ on <i>their</i> (combination: Mi (ii)	l	
10	(i)	$\frac{\mathrm{d}^2 P}{\mathrm{d} v^2} = 6$	$5v^2 + 3 - \frac{18}{v^2}$	M1 A1	[2]	Differentiate Fully correct			
	(ii)	= 0 at 6v $3(2v^2 - 3)$	$x^4 + 3v^2 - 18 = 0$ 3) $(v^2 + 2) = 0$	M1 M1		Polynomial an Method for sol	d equate to 0 ving quadratic in	v^2	
		$v^2 = \frac{3}{2}$		A1		$\frac{3}{2}$ seen or impl	lied		
		<i>v</i> = 1.22	(474)	A1		v = 1.22 or bet	ter and nothing el	se	
		<i>P</i> = 22.0	(454)	A1	[5]	P = 22.0 or bet	ter		
	(iii)	$\frac{\mathrm{d}^2 P}{\mathrm{d} v^2} = 1$	$2\nu + \frac{36}{\nu^3} > 0 \therefore \text{ minimum}$	B1	[1]		v minimum, need ical gradients or c		