

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

1347 MATHEMATICS (STATISTICS WITH PURE MATHEMATICS)

1347/02

Paper 2 (Statistics), maximum raw mark 80

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper	
	Pre-U – May/June 2012	1347	02	

Note: since there were no candidates this session, this mark scheme is a draft, and has not been modified in light of candidates' responses.

1 (i)	$S_{xx} = 1939552 - \frac{(4412)^2}{13} = 442187$	B1		442187 to nearest integer
	$S_{yy} = 605147 - \frac{(2387)^2}{13} = 166857$	B1		166857 to nearest integer
	$S_{xy} = 1074848 - \frac{4412 \times 2387}{13} = 264737$	B1		264737 to nearest integer
	$r = \frac{264737}{\sqrt{442187 \times 166857}} = 0.975 \ (0.9746)$	M1		Calculating <i>r</i> from their S_{xx} , S_{yy} and S_{xy} (numerical working or their <i>r</i> value correct to 3 sf or better)
	<i>r</i> is near 1, so a good fit to an upward sloping line	A1	[5]	Drawing a valid conclusion (confirming that a linear fit is appropriate, as stated in question)
(ii)	$b = \frac{264737}{442187} = 0.599 \ (0.5987)$	M1		Calculating <i>b</i> from their S_{xx} , S_{xy}
	$a = \frac{2387}{13} - 0.5987 \times \frac{4412}{13}$			
	$= 183.6 - 0.5987 \times 339.4 = -19.6$	M1		Calculating <i>a</i> from $\sum x$, $\sum y$ and their <i>b</i>
	y = 0.599x - 19.6	A1		Line correct with coefficients to 3sf or better
	$x = 2203 \Longrightarrow \hat{y} = 1300$	B1	[4]	From their line (± 2)
(iii)	Extrapolation beyond range of data	B1		Extrapolation
	Small sample / only based on one sample Sampling method not known / not random sampling London is not typical / London 'is different'	B1	[2]	Any valid objection

Pa	ge 3	Mark Scheme: Teachers' version					Syllabus	Paper	
	Pre-U – May/June 2012						1347	02	
2 (i)	Median =	= 30 mpg		B1		30 cao			
	Quartiles = 34 mpg and 23 mpg IQR = 11 mpg Outliers have mpg < 6.5 or > 50.5 \Rightarrow Toyota Prius			B1 M1 A1 B1	[5]	Accept 33 to 35 and 20 to 24 Their IQR calculated Fences calculated for their quartiles Identified by name in any way (follow			
	,					through their fences to at most three outliers)			
(ii)	greater th	erence between 23 an nan the difference bet ests that the distribut ic	ween 30 and 34,	B1	[1]	Using median and quartile values appropriately to deduce non-normal			
(iii)	$\frac{1 \ 2 \ 12 \ 2}{0 \ 0 \ -9}$ $\Sigma d^2 = 96$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1			ally correct calcul or the ranks	ation of <i>d</i> or	
	$r_s = 1 - \frac{6}{15}$	$\frac{\times 96}{\times 224} = 1 - 0.17143$	= 0.82857 = 0.829 (3 sf)	M1 A1	[4]	Correct calculation of r_s for their Σd^2 Correct value, to 3 sf or better			

Page 4		Mark Scheme: Teachers	Syllabus	Paper						
		Pre-U – May/June 2		1347	02					
3 (i)	·	lence between children, typical of population in respect of edness	B1 B1	[2]	·	ndependence (random sample) Probability 13% (constant probabilit				
(ii)	$X = num$ $X \sim B(20)$	ber of left-handers 0, 0.13)								
	13% of 2 $(0.87)^{20}$ -	$x_0 = 2.6$, so want P($X \le 2$) + 20(0.13)(0.87) ¹⁹ +	B1		$P(X \le 2)$	is needed				
	190(0.13	$)^{2}(0.87)^{18}$ 14 + 0.18443 + 0.26181	M1 A1			ng a probability in three correct pro				
	= 0.5079	5 = 0.508 to $3sf$	A1	[4]	0.508 or	better				
(iii)	X~B(20	(p, p) $p = P(left-hander)$			May imply definition of p					
		p = 0.13 p > 0.13	B1 B1		Null hypothesis $p = 0.13$ Alternative hypothesis $p > 0.13$ Omission of p only penalised once May imply level of test and one-tailed					
	$\alpha = 5\%$	one-tailed test								
	Assumin	g H ₀ , $X \sim B(20, 0.13)$								
	$P(X \ge 7)$ or cv = 6	= 1 - 0.9897 = 0.0103	M1		Calculating $P(X \le 7)$ or critical value (cv = 7 for a two-sided H ₁)					
	0.0103 <	5% or 7 > 6	M1		Compare with 5% (or $2\frac{1}{2}$ % for a two- sided H ₁) or compare cv with observed value 7 Reject H ₀ , from correct calculations					
	Reject H	0	A1							
	of the me	e supports claim, significantly more ost recent twenty presidents were left- han would be expected by chance	B1	[6]	Correct conclusion in context					
(iv)	hand in t Left-han in the pa	dedness was not recorded accurately st om samples, could be due to sample	B1	[1]	(reasons) may be d current da	l reason, either fr why sample from ifferent from sam ata) or addressing (random fluctuat	past data ple from statistical			

Page 5		Mark Scheme: Teachers' version				Syllabus	Paper		
		Pre-U – May/June 2	2012			1347	02		
			r]		
4 (i)	· · · · ·	$= 0.01 \Rightarrow z = 2.326$ $= 0.25 \Rightarrow z = -0.674$	B1		2.326 and 0.674 from tables				
	$2.326 = \frac{1}{2}$	$\frac{20-\mu}{\sigma} \Rightarrow 120 - \mu = 2.326\sigma$	M1		Substantially correct method (either)				
		$\frac{84-\mu}{\sigma} \Longrightarrow 84-\mu = -0.674\sigma$ 2.1, $\sigma = 12$	A1 B1			rect for their z-value positive and one m 2 (cao)			
			B1	[5]	12 (cao)				
(ii)	H ₁ : S ten	les come from same populations d to have larger increases than N ve smaller rank values than N)	B1		Appropri	ate statement of h	ypotheses		
	One-taile	d test, $\alpha = 5\%$							
	Rank sum $\Rightarrow W = 2$	n for S = $1 + 3 + 4 + 5 + 6 + 8$ 27	M1 A1		Attempt to sum ranks (27 or 109) W = 27 from correct working				
	m = 6 n	= $10 \Rightarrow$ critical value for $W = 35$	B1		Critical value 35				
	the increa	6 level the data support the claim that ases are greater for the smokers than on-smokers	B1	[5]	Correct conclusion, in context, from use of Wilcoxon rank-sum				
(iii)	For the si Estimate	mokers, $\sum x = 708 \Rightarrow \overline{x} = 118$ $\widehat{\mu}_s = 118$	B1		Mean 118	8 cao			
	$\sum x^2 = 833$	$864 \implies S_{xx} = 320 \implies s^2 = 64$	M1		Sight of c or 7.30	one of 83864, 320	, 64, 8, 53.3		
	Estimate	$\widehat{\sigma_s^2} = 64$	A1	[3]	Variance	64 cao			
(iv)	V N($\frac{\sigma_s^2}{n}$) where $\hat{\sigma}_s = 8$ and $n = 6$							
		$\frac{1}{n}$) where $\sigma_s = 8$ and $n = 6$ alues in t(5) are ± 2.571			· · ·		a		
		$\frac{1}{2} \frac{1}{2} \frac{1}$	B1		Using <i>t</i> tables to find 2.571 or 2.447				
	Confiden	ce interval is $118 \pm 2.571 \times \frac{8}{\sqrt{6}}$	M1		Correct method for their " <i>t</i> " value and their \overline{x} , $\hat{\sigma}$				
	= 118 <u>+</u>	8.4 = [109.6, 126.4]	A1	[3]	Interval c	orrect, in any app rough their value	-		

Page 6		Mark Scheme: Teachers	Syllabus	Paper				
		Pre-U – May/June 2	2012			1347	02	
5 (i)	$x = 47 \rightarrow$	$z = 0.667; x = 51 \rightarrow z = 2.0$	B1		z = 2 and	0.667 seen or imp	lied	
		$X \le 51) = 0.9772 - 0.7477$	M1			0.9772 and 0.7477 seen or implied		
	Expected	frequency = $0.2295 \times 100 = 22.95$	A1	[3]	Subtract and multiply by 100 (22.95 given in question)			
(ii)	frequence Weight Obs freq Exp freq	asses in tails to make expected ies at least 5 <43 43-45 45-47 >47 32 24 30 14 25.23 24.77 24.77 25.23 1.82 0.02 1.10 5.00	B1 M1		Merging tails correctly Substantially correct calculation of (with or without merging)			
	$X^2 \text{ calc} =$ $H_0: N(45)$		A1 B1		7.94, or art 7.94, from correct method cao Any correct statement of H_0 Accept 'normal distribution'			
	Reject H	ot consistent with a N(45, 9)	B1 B1	[6]	7.815, from tables, cao Correct conclusion, and interpretation words, for their X^2 value			
(iii)	v = n - 1 No need	= 4 - 1 = 3 to reduce df for parameters as not 1 from sample data	B1	[1]	4 classes – 1 restriction (total), or equivalent			
(iv)	cann	ance cannot be estimated, midpoints ot be found for first and last classes boundaries are not known	B1	[1]		unknown since gr of variance unlike	•	
	0	test nedian = 45 $\alpha = 5\%$ nedian $\neq 45$ two-tailed test	B1			or binomial test or proportion that are		
	Assu	number of chicks with weight ≤ 45 g ming H ₀ , $Y \sim B(100, 0.5)$	M1		Or using proportions An appropriate distribution or approximating distribution			
	Criti 9.8	coximate by N(50, 25) cal values are $50 \pm 1.96 \times 5 = 50 \pm $ = [40.2, 59.8] erved y = 56 (or 44 above)	A1		Critical values correct (or with proportions) Or test observed proportions (or values) to give a tail probability of 0.115 (or 0.136)			
	Data with	ept H_0 are consistent with a distribution median = 45. vidence that median is not 45	B1	[4]	Accept H ₀ , follow through their critical values from substantially correct method , or interpretation in words			

Page 7		Mark Scheme: Teachers	Syllabus	Paper				
		Pre-U – May/June 2	2012			1347	02	
			1					
6 (i)	6 (i) $X \sim N(10, 9)$ approx Critical value = $10 + 1.645 \times 3 + 0.5$ = $14.935 + 0.5$ = 15.435 Critical value = 16				without c 14.5 to 15	ariance an + 1.645 × their ontinuity correcti	n correct working	
	If the number observed is 15 or fewer, accept H_0 and conclude that p may be 0.10 If number observed is 16 or more, reject H_0 and conclude that p is probably greater than 0.10 P(Type I error) = P(reject H_0 when it is true)				Correct description of accept or reject from their critical value of 16 or 15 May be worded in terms of $x <$ their critical value in binomial or normal Understanding what a Type I error is Allow for P(Type I error) = 5%			
	$= P(X \ge 1)$	16) in B(100, 0.10) 15.5) in N(10, 9) approx $15.5 - 10)/3$ = P($Z \ge 1.833$) = 1 –	M1 A1	[8]	15 $P(X \ge 15.9)$ 0.03 to 0.	arough their intege (5) or $P(X \ge 16)$ ir (035 or 3% to 3.59) = 15 gives 0.0668	n their N(10, %	
(ii)	P(Type II error) = P(accept H ₀ when it is false) = P($X \le 15$) in B(100, 0.20) = P($X \le 15.5$) in N(20, 16) approx = P($Z \le (15.5 - 20)/4$) = P($Z \le -1.125$) = 1 – 0.8696 = 0.1304			[3]	B(100, 0. Follow th 15 0.13 to 0.	nding what a Typ 20) or N(20, 16) or rough their intege 135 or 13% to 13 = 15 gives 0.0845	used er cv of 16 or .5%	
(iii)		14, $\frac{0.14 \times 0.86}{100}$) 14, 0.001204) approx	B1		Mean 0.1	4 and variance $\frac{0.1}{1}$	$\frac{4 \times 0.86}{100}$	
	95% CI = $0.14 \pm 1.96\sqrt{0.001204}$ = 0.14 ± 0.068 = [0.072, 0.208]		M1 A1	[4]	Correct in without a	nethod for their di nterval, in any for n attempt at conti	m, with or nuity	
	0.10 and	0.20 are both in this interval	B1	[4]	This state	ement, or equivale	ent, provided	