MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

1347 MATHEMATICS (STATISTICS WITH PURE MATHEMATICS)

1347/02
Paper 2 (Statistics), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	1347	02

Note: since there were no candidates this session, this mark scheme is a draft, and has not been modified in light of candidates' responses.

1 (i)	$\begin{aligned} & S_{x x}=1939552-\frac{(4412)^{2}}{13}=442187 \\ & S_{y y}=605147-\frac{(2387)^{2}}{13}=166857 \\ & S_{x y}=1074848-\frac{4412 \times 2387}{13}=264737 \\ & r=\frac{264737}{\sqrt{442187 \times 166857}}=0.975(0.9746) \end{aligned}$ r is near 1 , so a good fit to an upward sloping line	B1 B1 B1 M1 A1 [5]	442187 to nearest integer 166857 to nearest integer 264737 to nearest integer Calculating r from their $S_{x x}, S_{y y}$ and $S_{x y}$ (numerical working or their r value correct to 3 sf or better) Drawing a valid conclusion (confirming that a linear fit is appropriate, as stated in question)
(ii)	$\begin{aligned} & b=\frac{264737}{442187}=0.599(0.5987) \\ & a \end{aligned}=\frac{2387}{13}-0.5987 \times \frac{4412}{13}, ~ \begin{aligned} y & =0.599 x-19.6 \\ & =183.6-0.5987 \times 339.4=-19.6 \\ x & =2203 \Rightarrow \hat{y}=1300 \end{aligned}$	M1 M1 A1 B1 [4]	Calculating b from their $S_{x x}, S_{x y}$ Calculating a from $\Sigma x, \Sigma y$ and their b Line correct with coefficients to 3 sf or better From their line (± 2)
(iii)	Extrapolation beyond range of data Small sample / only based on one sample Sampling method not known / not random sampling London is not typical / London 'is different'	B1 B1	Extrapolation Any valid objection

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	1347	02

2 (i)	$\begin{aligned} & \text { Median }=30 \mathrm{mpg} \\ & \text { Quartiles }=34 \mathrm{mpg} \text { and } 23 \mathrm{mpg} \\ & \mathrm{IQR}=11 \mathrm{mpg} \\ & \text { Outliers have } \mathrm{mpg}<6.5 \text { or }>50.5 \\ & \Rightarrow \text { Toyota Prius } \end{aligned}$	B1 B1 M1 A1 B1 [5]	30 cao Accept 33 to 35 and 20 to 24 Their IQR calculated Fences calculated for their quartiles Identified by name in any way (follow through their fences to at most three outliers)
(ii)	The difference between 23 and 30 is much greater than the difference between 30 and 34, this suggests that the distribution is not symmetric	B1 [1]	Using median and quartile values appropriately to deduce non-normal
(iii)	$\begin{array}{ccccccccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 1 & 2 & 12 & 3 & 4 & 5 & 6 & 7 & 8 & 11 & 9 & 10 & 13 & 14 & 15 \\ \hline 0 & 0 & -9 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & 2 & 2 & 0 & 0 & 0 \end{array}$	M1 A1 M1 A1 [4]	Substantially correct calculation of d or $\|d\|$ or d^{2} for the ranks Correct calculation of r_{s} for their Σd^{2} Correct value, to 3 sf or better

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	1347	02

3 (i)	Independence between children, class are typical of population in respect of left-handedness	$\begin{aligned} & \text { B1 } \\ & \text { B1 [2] } \end{aligned}$	Independence (random sample) Probability 13\% (constant probability)
(ii)	$\begin{aligned} & X=\text { number of left-handers } \\ & X \sim \mathrm{~B}(20,0.13) \\ & 13 \% \text { of } 20=2.6, \text { so want } \mathrm{P}(X \leq 2) \\ & (0.87)^{20}+20(0.13)(0.87)^{19}+ \\ & 190(0.13)^{2}(0.87)^{18} \\ & =0.061714+0.18443+0.26181 \\ & =0.50795 \ldots=0.508 \text { to } 3 \mathrm{sf} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A] } \end{aligned}$	$\mathrm{P}(X \leq 2)$ is needed Calculating a probability in $\mathrm{B}(20,0.13)$ (At least) three correct probabilities added 0.508 or better
(iii)	$\begin{aligned} & X \sim \mathrm{~B}(20, p) \quad p=\mathrm{P}(\text { left-hander }) \\ & \mathrm{H}_{0}: p=0.13 \\ & \mathrm{H}_{1}: p>0.13 \\ & \alpha=5 \% \quad \text { one-tailed test } \\ & \text { Assuming } \mathrm{H}_{0}, X \sim \mathrm{~B}(20,0.13) \\ & \mathrm{P}(X \geq 7)=1-0.9897=0.0103 \\ & \text { or } \mathrm{cv}=6 \\ & 0.0103<5 \% \text { or } 7>6 \end{aligned}$ $\text { Reject } \mathrm{H}_{0}$ Evidence supports claim, significantly more of the most recent twenty presidents were lefthanded than would be expected by chance	B1 B1 M1 M1 A1 B1 [6]	May imply definition of p Null hypothesis $p=0.13$ Alternative hypothesis $p>0.13$ Omission of p only penalised once May imply level of test and one-tailed Calculating $\mathrm{P}(X \leq 7)$ or critical value (cv = 7 for a two-sided H_{1}) Compare with 5% (or $2 \frac{1}{2} \%$ for a twosided H_{1}) or compare cv with observed value 7 Reject H_{0}, from correct calculations Correct conclusion in context
(iv)	Schools trained pupils to write with their right hand in the past Left-handedness was not recorded accurately in the past Not random samples, could be due to sample variation	B1 [1]	Any valid reason, either from context (reasons why sample from past data may be different from sample from current data) or addressing statistical variation (random fluctuation)

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	1347	02

4 (i)	$\begin{aligned} & \mathrm{P}(\mathrm{Z}>z)=0.01 \Rightarrow z=2.326 \\ & \mathrm{P}(Z<z)=0.25 \Rightarrow z=-0.674 \\ & 2.326=\frac{120-\mu}{\sigma} \Rightarrow 120-\mu=2.326 \sigma \\ & -0.674=\frac{84-\mu}{\sigma} \Rightarrow 84-\mu=-0.674 \sigma \\ & \Rightarrow \mu=92.1, \sigma=12 \end{aligned}$	B1 M1 A1 B1 B1 [5]	2.326 and 0.674 from tables Substantially correct method (either) Both correct for their z-values, one of which is positive and one negative 92.1 or 92 (cao) 12 (cao)
(ii)	H_{0} : samples come from same populations H_{1} : S tend to have larger increases than N (S have smaller rank values than N) One-tailed test, $\alpha=5 \%$ Rank sum for $S=1+3+4+5+6+8$ $\Rightarrow W=27$ $m=6 n=10 \Rightarrow$ critical value for $W=35$ Reject H_{0} At the 5\% level the data support the claim that the increases are greater for the smokers than for the non-smokers	B1 M1 A1 B1 B1 [5]	Appropriate statement of hypotheses Attempt to sum ranks (27 or 109) $W=27$ from correct working Critical value 35 Correct conclusion, in context, from use of Wilcoxon rank-sum
(iii)	For the smokers, $\Sigma x=708 \Rightarrow \bar{x}=118$ Estimate $\widehat{\mu}_{s}=118$ $\Sigma x^{2}=83864 \Rightarrow S_{x x}=320 \Rightarrow s^{2}=64$ Estimate $\widehat{\sigma_{s}^{2}}=64$	B1 M1 A1 [3]	Mean 118 cao Sight of one of $83864,320,64,8,53.3$ or 7.30 Variance 64 cao
(iv)	$\bar{X} \sim \mathrm{~N}\left(\mu_{s}, \frac{\sigma_{s}^{2}}{n}\right)$ where $\widehat{\sigma}_{s}=8$ and $n=6$ Critical values in $\mathrm{t}(5)$ are ± 2.571 Confidence interval is $118 \pm 2.571 \times \frac{8}{\sqrt{6}}$ $=118 \pm 8.4=[109.6,126.4]$	B1 M1 A1 [3]	Using t tables to find 2.571 or 2.447 Correct method for their " t " value and their $\bar{x}, \hat{\sigma}$ Interval correct, in any appropriate form (follow through their values from part (iii))

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	1347	02

5 (i)	$\begin{aligned} & x=47 \rightarrow z=0.667 ; x=51 \rightarrow z=2.0 \\ & \mathrm{P}(47<X \leq 51)=0.9772-0.7477 \\ & \text { Expected frequency }=0.2295 \times 100=22.95 \end{aligned}$	B1 M1 A1 [3]	$z=2$ and 0.667 seen or implied 0.9772 and 0.7477 seen or implied Subtract and multiply by 100 (22.95 given in question)
(ii)	Merge classes in tails to make expected frequencies at least 5 $\mathrm{H}_{0}: \mathrm{N}(45,9)$ distribution H_{1} : some other distribution From tables, critical value $=7.815$ Reject H_{0} Data is not consistent with a $\mathrm{N}(45,9)$ distribution	B1 M1 A1 B1 B1 B1 [6]	Merging tails correctly Substantially correct calculation of X^{2} (with or without merging) 7.94, or art 7.94, from correct method, cao Any correct statement of H_{0} Accept 'normal distribution' 7.815, from tables, cao Correct conclusion, and interpretation in words, for their X^{2} value
(iii)	$v=n-1=4-1=3$ No need to reduce df for parameters as not estimated from sample data	B1 [1]	4 classes - 1 restriction (total), or equivalent
(iv)	(a) Variance cannot be estimated, midpoints cannot be found for first and last classes since boundaries are not known	B1 [1]	Variance unknown since grouped data. Estimate of variance unlikely to be very accurate.
	(b) Sign test H_{0} : median $=45 \quad \alpha=5 \%$ H_{1} : median $\neq 45$ two-tailed test $Y=$ number of chicks with weight $\leq 45 \mathrm{~g}$ Assuming $\mathrm{H}_{0}, Y \sim \mathrm{~B}(100,0.5)$ Approximate by $\mathrm{N}(50,25)$ Critical values are $50 \pm 1.96 \times 5=50 \pm$ 9.8 $=[40.2,59.8]$ Observed $y=56$ (or 44 above) Accept H_{0} Data are consistent with a distribution with median $=45$. No evidence that median is not 45	B1 M1 A1 B1	Sign test or binomial test or equivalent (e.g. test proportion that are below 45) Or using proportions An appropriate distribution or approximating distribution Critical values correct (or with proportions) Or test observed proportions (or values) to give a tail probability of 0.115 (or 0.136) Accept H_{0}, follow through their critical values from substantially correct method, or interpretation in words

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	1347	02

6 (i)	$X \sim \mathrm{~N}(10,9)$ approx $\begin{aligned} \text { Critical value } & =10+1.645 \times 3+0.5 \\ & =14.935+0.5 \\ & =15.435 \\ \text { Critical value } & =16 \end{aligned}$ If the number observed is 15 or fewer, accept H_{0} and conclude that p may be 0.10 If number observed is 16 or more, reject H_{0} and conclude that p is probably greater than 0.10 P(Type I error) $=\mathrm{P}$ (reject H_{0} when it is true $)$ $\begin{aligned} & =\mathrm{P}(X \geq 16) \text { in } \mathrm{B}(100,0.10) \\ & =\mathrm{P}(X \geq 15.5) \text { in } \mathrm{N}(10,9) \text { approx } \\ & =\mathrm{P}(Z \geq(15.5-10) / 3)=\mathrm{P}(Z \geq 1.833)=1- \\ & 0.9666 \\ & =0.0334 \end{aligned}$	M1 A1 M1 A1 B1 B1 M1 A1 [8]	Correct mean Correct variance Their mean $+1.645 \times$ their sd (with or without continuity correction) 14.5 to 15.5 , from correct working or giving cv as 16 or 15 Correct description of accept or reject from their critical value of 16 or 15 May be worded in terms of $x<$ their critical value in binomial or normal Understanding what a Type I error is Allow for $\mathrm{P}($ Type I error $)=5 \%$ Follow through their integer cv of 16 or 15 $\mathrm{P}(X \geq 15.5)$ or $\mathrm{P}(X \geq 16)$ in their $\mathrm{N}(10$, 9) 0.03 to 0.035 or 3% to 3.5% Note: cv $=15$ gives 0.0668 (0.065 to 0.07)
(ii)	$\begin{aligned} & \mathrm{P}(\text { Type II error })=\mathrm{P}\left(\text { accept } \mathrm{H}_{0}\right. \text { when it is } \\ & \text { false })=\mathrm{P}(X \leq 15) \text { in } \mathrm{B}(100,0.20) \\ & =\mathrm{P}(X \leq 15.5) \text { in } \mathrm{N}(20,16) \text { approx } \\ & =\mathrm{P}(Z \leq(15.5-20) / 4)=\mathrm{P}(Z \leq-1.125)=1- \\ & 0.8696 \\ & =0.1304 \end{aligned}$	B1 M1 A1 [3]	Understanding what a Type II error is $\mathrm{B}(100,0.20)$ or $\mathrm{N}(20,16)$ used Follow through their integer cv of 16 or 15 0.13 to 0.135 or 13% to 13.5% Note: $\mathrm{cv}=15$ gives 0.0845 (0.08 to 0.085)
(iii)	$\begin{aligned} & P \sim \mathrm{~N}\left(0.14, \frac{0.14 \times 0.86}{100}\right) \\ & \quad=\mathrm{N}(0.14,0.001204) \text { approx } \end{aligned}$ $\begin{aligned} 95 \% \mathrm{CI} & =0.14 \pm 1.96 \sqrt{ } 0.001204 \\ & =0.14 \pm 0.068=[0.072,0.208] \end{aligned}$ 0.10 and 0.20 are both in this interval	B1 M1 A1 B1 [4]	Mean 0.14 and variance $\frac{0.14 \times 0.86}{100}$ Correct method for their distribution Correct interval, in any form, with or without an attempt at continuity This statement, or equivalent, provided true

