Cambridge International Examinations

MAXIMUM MARK: 100

This document consists of 6 printed pages.

Section 1

1 (a) (i) vectors have magnitude and direction but scalars have only magnitude
(1) $[1]$
(1)
(1)
[2]
(b) (i)

three vectors correctly arranged (nose-to-tail)
resultant with correct arrow
(ii) (component in x-direction $\left.=37 \cos 25^{\circ}=\right) 33.5$ (units)
(component in y-direction $=37 \sin 25^{\circ}=$) 15.6 (units)
(2) $[2]$
[Total: 7]

2
(a) power $=\frac{\mathrm{d}(\mathrm{WD})}{\mathrm{d} t}$ or $\mathrm{WD}=\int \mathrm{P} \mathrm{d} t$
equals $\frac{\mathrm{d}(\boldsymbol{F} \cdot \boldsymbol{x})}{\mathrm{d} t}$ equals $\frac{\boldsymbol{F} \cdot \mathrm{d} \boldsymbol{x}}{\mathrm{d} t}$ equals $\boldsymbol{F} . \boldsymbol{v}$
OR
work done equals force \times distance moved (in the direction of the force) so
work done in unit time (second) $=$ force \times distance moved in unit time (second)
(therefore power $=$ force \times velocity) accept sensible symbols
(b) (i) $1800=F \times 12.0 ; \quad F=\frac{1800}{12.0}=150(\mathrm{~N})$
(ii) $150(\mathrm{~N})$ or candidate's answer to (b)(i)
(c) (i) 850×2.5
$2125\left(\mathrm{~kg} \mathrm{~ms}^{-2}\right)$
(1)
(ii) (driving force =) 2125 + candidate's (b)(ii) calculated (expected answer = $2275(\mathrm{~N})$)
(d) (i) $\left(R \propto v^{2}\right)$
$\frac{R_{\text {slow }}}{R_{\text {fast }}}=\left(\frac{12.0}{36.0}\right)^{2}=\frac{1}{9}$ or $k=1.042$
(resistance at high speed $=9 \times 150=$) $1350(\mathrm{~N})$
(1) $[2]$
(ii) (power output $=1350 \times 36=) 48600(W)$

3 (a) (i) (current $\left.=\frac{V}{R}=\right) \frac{240(\mathrm{~V})}{20}(\Omega)$ or $12(\mathrm{~A})$
power $=V \times 1$ or 240×12
(240×12 =) $2880(\mathrm{~W})$
alternatively $\frac{V^{2}}{R}=\frac{240^{2}}{20}=2.88 \times 10^{3}(\mathrm{~W})$
(ii) $(E=) 2880 \times t=m \times c \times \Delta T$
[2]
(b) (i) the (single) switch will cause three lights A, B and C to come on
(ii) either switch turns lamp D on (by completing circuit)
either switch turns lamp D off (by breaking circuit)
(iii) (current $=) \frac{10(\mathrm{~W})}{240(\mathrm{~V})}$ or $\frac{1}{24}(\mathrm{~A})$ or $\frac{V^{2}}{P}$ or $\frac{240^{2}}{10}$
$\left(\right.$ resistance $\left.=\frac{V}{I}=240 \times 24=\right) 5760(\Omega)$
[2]
(c) (i) one correct route from P to Q
second correct route from P to Q
(ii) any two from:
independent switching/if one appliance fails the others work
many sockets can be attached to the ring
extra sockets can be put in with little difficulty
large currents can be supplied by two cables
less wiring needed
fault on one side will still leave circuit working

4 (a) (i) transverse wave with oscillation/vibration at right angles to direction of travel longitudinal wave with oscillation/vibration in the direction of travel accept answers in terms of a diagram
(ii) polarised with all the oscillation in one plane/direction/angle
non-polarised with a variety of planes/directions/angles
a diagram here must have at least three doubled headed arrows
(iii) any three from:
standing wave as two waves (of the same type and frequency) travelling in opposite directions
(b) (i) $(n \lambda=d \sin \theta)$

$$
\begin{align*}
d & =\frac{1}{500}(\mathrm{~mm})=2 \times 10^{-6}(\mathrm{~m}) \tag{1}\\
\lambda & =\frac{\sin 36.09 \times 2.0 \times 10^{-6}}{2} \tag{1}\\
& =5.891 \times 10^{-7}(\mathrm{~m}) \tag{1}
\end{align*}
$$

(ii) $\lambda=\sin 36.13 \times 10^{-6}=5.896 \times 10^{-7}(\mathrm{~m})$
(iii) θ in radians or $\frac{0.04 \times 2 \pi}{360}$
$\left(\theta=0.04^{\circ}=\frac{0.04 \times 2 \pi}{360}(\mathrm{rad}) \Rightarrow 6.98 \times 10^{-4}(\mathrm{rad})\right.$ or $b=\frac{\lambda}{0.04}$
or $b=\frac{\lambda}{\text { candidate's value }}$
$8.4 \times 10^{-4}(\mathrm{~m})$

5 (a) (i) $\mathrm{P}=236$ cao and $\mathrm{Q}=92$ cao
$R=143$ cao
(1) [2]
(ii) more neutrons are produced than are required to cause the reaction
(1) $[1]$
(b) (i) ${ }_{38}^{90} \mathrm{Sr} \rightarrow{ }_{39}^{90} \mathrm{Y}+{ }_{-1}^{0} \beta^{(-)} \quad$ allow if candidate writes x Sr and ${ }_{\mathrm{x}+1} \mathrm{Y}$
correct yttrium numbers
correct beta numbers
(ii) 39
(iii) half life is 28 years so 112 years is 4 half lives
number present after this time is $\frac{1}{16}$ of original
number present $=\frac{2.36 \times 10^{13}}{16}=1.475 \times 10^{12}$
[3]
[Total: 9]

6 (a) when photons/em radiation/light is incident on surfaces/electrons/material/atom electrons are emitted
photons must have sufficiently high energy/frequency
$h f$ is the energy of a photon/em radiation/light/wave
Φ is the work function/(minimum) energy required to liberate an electron
$\frac{1}{2} m v^{2}$ is the (maximum) kinetic energy of a liberated electron
(b) use of a stopping potential arrangement with correct polarity and (sensitive) galvanometer/ammeter measure/adjust p.d. to a situation where current ceases this gives energy per unit charge so to get v charge per this gives energy per unit charge so to get $v_{\text {max }}$ charge per unit mass of electron needs to be used or $e V_{S}=\frac{1}{2} m v^{2}{ }_{\text {max }}$
[4]
(c) (i) any one from
very low intensity still produces immediate emission kinetic energy of electons does not depend on the intensity emission is affected by frequency (e.g. there is a threshold frequency)
(ii) any one from
classical wave requires a wait
the more energy incident on the material, the greater will be the maximum kinetic energy
frequency does not affect emission (provided the energy is the same)
(iii) any one from
some electrons will absorb the few photons
each electron absorbs one photon (of constant energy)
energy of photon depends on frequency or $E=h f$
[Total: 13]
$7 \quad$ Limiting angle for toppling
Calculation of angle at which this occurs (geometric method expected)
$\tan \theta=\frac{10}{15}=0.67$
hence $\theta=33.7^{\circ}$

Condition to slide

component of weight down slope $=m g \sin \theta$
friction force acting up slope $=\mu_{\mathrm{s}} m g \cos \theta$
leading to $\tan \theta=\mu_{\mathrm{s}}=0.60$
hence $\theta=31.0^{\circ}$

Prediction/conclusion

31.0° (slide) < 33.7° (topple) therefore it slides (before toppling).
(2) $[8]$
accept conclusion based on direct comparison of values for tangents accept conclusion based on the requirement for the coefficient of static friction to be greater than 0.600
[Total: 8]

Section 2

8 (a) (i) 1. $800(\mathrm{~A})$
2. 350000 or $3.5 \times 10^{5}(\mathrm{~V})$
(ii) $\quad(P=) V$ seen or implied (in 1. or 2.)
$2.8 \times 10^{8}(\mathrm{~W})$ and 0
(iii) up and down graph - e.g. sawtooth, triangular wave - and number on axis
decent $\sin ^{2}$ graph with correct curvature at bottom
time period of bumps $=0.010 \mathrm{~s}$
(iv) horizontal line
horizontal line at $\frac{2.8 \times 10^{8} \mathrm{~W}}{\text { candidate's value }}$
(v) reference to area under the graph area under the graph is greater
(b) (i) $0.0107(\mathrm{~m})$ or 1.07 cm or 10.7 mm
(ii) $\pi\left(r_{1}{ }^{2}-r_{2}{ }^{2}\right)$ or $\pi\left(1.50^{2}-0.43^{2}\right)$ or $\pi\left(0.0150^{2}-0.0043^{2}\right)$
$6.49 \times 10^{-4}\left(\mathrm{~m}^{2}\right)$
(iii) $R=\frac{\rho l}{A}$ or $\frac{1.72 \times 10^{-8} \times 5.8 \times 10^{3}}{6.49 \times 10^{-4}}$
and
$\frac{1.72 \times 10^{-8} \times 580000}{6.49 \times 10^{-4}}$ or 15.3 or $15.4(\Omega)$
(iv) $\quad(P=) I^{2} R$ or $800^{2} \times 15.3$
9.79 (MW) accept 9.86 (from $R=15.4 \Omega$)
(c) (i) $\quad\left(Q_{\mathrm{t}}\right) C V_{0} \sin (2 \pi f t)$ or $C V_{\mathrm{t}}$ not $C V$
(ii) the charge on the plates charges and charge flows on and off the plates
(iii) 1. the more quickly the charge charges and the more quickly the charge flows (1)
2. $($ capacitive reactance $=) \frac{1}{2 \pi f C}$ and ohm $/ \Omega / \mathrm{VA}^{-1}$
3. $\left(\mathrm{I}_{0}=\right) 2 \times \pi \times 50.0 \times 200 \times 7.00 \times 10^{-7} \times 350000$

$$
\begin{equation*}
1.54 \times 10^{4}(\mathrm{~A}) \tag{1}
\end{equation*}
$$

(iv) there is an extra current (not present with d.c.) which generates greater energy losses

