MARK SCHEME for the May/June 2013 series

9792 PHYSICS

9792/03
Paper 3 (Part B Written), maximum raw mark 140

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	03

Section A

1 (a) (i) $\mathrm{F}=\mathrm{GMm} / \mathrm{r}^{2}$ plus values on top line

$$
\begin{align*}
& r=\left(6.37 \times 10^{6}\right)+\left(0.39 \times 10^{6}\right)=6.76 \times 10^{6} \tag{1}\\
& \mathrm{~F}=724(\mathrm{~N}) \tag{1}
\end{align*}
$$

(ii) $\mathrm{a}=\mathrm{F} / \mathrm{m}=724.4 / 83=8.73$
(iii) $a=v^{2} / r$ therefore $v=\sqrt{a r}$
$=\sqrt{\left(8.73 \times 6.76 \times 10^{6}\right)}=7680$
(iv) circumference $=2 \pi r=2 \pi \times 6.76 \times 10^{6}$
time $=$ circumference/speed
$=2 \pi \times 6.76 \times 10^{6} / 7680=5530 \mathrm{~s}(=1 \mathrm{hr}, 32 \mathrm{~min}, 18 \mathrm{sec})$
(b) e.g. jumping from a wall, doing a high jump, diving into a swimming pool
(1)
(c) the astronaut is not weightless

Any one from there is no air resistance on the astronaut the force on the astronaut is causing his acceleration (towards the Earth) the astronaut is not moving relative to his surroundings
Any one from you are in free fall you have friction of air on you your surroundings are moving relative to you
[Total: 13]

2 (a) (i) $\mathrm{T}=2 \pi \sqrt{(2.6 / 9.81)}=3.23 \mathrm{~s}$
(ii) $\quad \omega=2 \pi / \mathrm{T}=1.94 \mathrm{rads}^{-1}$
(iii) $A=2.6 \sin 2.3=0.1043 \mathrm{~m}$
$E=1 / 2 m A^{2} \omega^{2}=1 / 2 \times 0.87 \times 0.1043^{2} \times 1.94^{2}=0.0178 \mathrm{~J}$
OR h $=2.6-2.6 \cos 2.3\left(=2.09 \times 10^{-3}\right)$

$$
\begin{equation*}
\mathrm{mgh}=0.87 \times 9.81 \times\left(2.09 \times 10^{-3}\right)=0.0178 \mathrm{~J} \tag{1}
\end{equation*}
$$

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	03

(b) straightforward details

MAX 3
e.g. measure the period with a stopwatch, OR use a light gate
measure the angle of swing with a protractor) OR with ruler an correct calculation repeat the procedure to include large angles
enhanced details
MAX 3
e.g. preliminary trials to get measuring device in the right place make the period long by the use of a long support string method of release clear
coordination between angle and period for single or half swings
do the experiment in a vacuum
repeat procedure at same angle
sophisticated details\#
MAX 1
clear diagram of light gate procedure for single swings digital recording, i.e. slow motion, and explanation of how actual times are obtained

OVERALL MAXIMUM 5 with no diagram
[Total: 10]

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	03

3 (a)

capacitance $/ \mu \mathrm{F}$	potential difference $/ \mathrm{V}$	charge $/ \mu \mathrm{C}$	energy $/ \mu \mathrm{J}$
4.0	$9.0[1]$	36	162
3.0	$3.0[1]$	$9[1]$ ecf	13.5 [1] ecf
$\mathrm{X}=9.0[1]$	3.0	$27[1]$	$40.5[1]$

(b) (i) $\begin{array}{ll}1 & 36(\mu \mathrm{C}) \\ & 2\end{array}$
(1)
(1) [2]
(ii) energy is lost in the charging process
because V needs to be increased as the charge builds up
e.g. while charging the area beneath the QV graph is a triangle of area $1 / 2$ QV

4 (a) (i) $3.8 \times 10^{-5} \times 20=7.6 \times 10^{-4}(\mathrm{~Wb})$
(1) [1]
[2]
(1)
(1)
[2]
(1)
(1)
[2]
(1)
(1)
[2]
[Total: 9]

5 (a) volume of molecules very much smaller than volume of container all collisions elastic
no force on molecules except on contact OR time of collision is negligible compared to the time between collisions

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	03

(b) movement of particles in a fluid (liquid or gas)
molecules in fluid collide with particles
random movement of large particles
that are (just) visible (under a microscope)
other relevant point
1 mark for each point to maximum 3
(c) (i) $\mathrm{T}=296 \mathrm{~K}$
average k.e. $=3 / 2 \mathrm{kT}=3 / 2 \times 1.38 \times 10^{-23} \times 296=6.13 \times 10^{-21}(\mathrm{~J})$
[2]
(ii) $6.13 \times 10^{-21}=1 / 2 \times 5.31 \times 10^{-26} \times\left\langle\mathrm{c}^{2}\right\rangle$
$\sqrt{\left\langle\mathrm{c}^{2}\right\rangle}=\sqrt{\left(2 \times 6.13 \times 10^{-21} / 5.31 \times 10^{-26}\right)}=481\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
(d) (i) internal energy is sum of kinetic and potential energies of the molecules
(ii) 1. no change, and 2. no change

1. as internal energy (includes) the random kinetic energy of the molecules
2. internal potential energy is due to elastic potential energy between molecules
3. internal energy decreases
because molecules have lower average speeds

6 (a) loss of mass $=(1.6744-1.6730-0.00091) \times 10^{-27} \mathrm{~kg}$
$=4.89 \times 10^{-31} \mathrm{~kg}$
$E=m c^{2}=4.89 \times 10^{-31} \times\left(3 \times 10^{8}\right)^{2}=4.40 \times 10^{-14}(\mathrm{~J})$
(b) (i) $(4.40-2.3) \times 10^{-14}=2.1 \times 10^{-14}(\mathrm{~J})$
(ii) $2.1 \times 10^{-14} \mathrm{~J}=1 / 2 \mathrm{mv}^{2}: \mathrm{v}=\sqrt{\left(2 \times 2.1 \times 10^{-14} / 9.11 \times 10^{-31}\right)}=2.15 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
momentum $=m v=9.11 \times 10^{-31} \times 2.15 \times 10^{8}=1.96 \times 10^{-22} \mathrm{Ns}$
(c) directions opposite and arrow of electron very much larger than arrow of proton
(d) third body was a neutrino
had no charge and small mass
diagram showing different angles possible
neutrino takes some of the energy
1 mark for each point made to maximum $3+1$ for equation +1 for correct neutrino symbol
${ }_{0}^{1} \mathrm{n} \rightarrow{ }_{1}^{1} \mathrm{p}+{ }_{-1}^{0} \mathrm{e}+{ }_{0}^{0} \bar{v}$
[Total: 12]

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	03

7 (a) (i) the total power radiated by a star
(ii) the intensity of radiation at a distance from the star (at the Earth)
(b) (i) the (surface) temperature of the star
(ii) the elements present on the star the speed of recession of the star
(c) (i) $v=3.0 \times 10^{8} \times 26.5 \times 10^{-9} / 516.7 \times 10^{-9}$
$=1.54 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
(ii) $\mathrm{d}=\mathrm{v} / \mathrm{H}_{0} \mathrm{OR}=1.54 \times 10^{7} / 2.3 \times 10^{-18}$

$$
\begin{equation*}
=6.7 \times 10^{24}(\mathrm{~m}) \tag{1}
\end{equation*}
$$

[Total: 9]

Page 7	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	03

Section B

8 (a) (i) (speed is constant but) direction is continuously changing (towards centre) velocity is changing) with time (so body accelerates)
(ii) $a=v^{2} / r$
(b) $(\mathrm{R}-\mathrm{mg})=\mathrm{m} \times\left(\mathrm{v}^{2} / \mathrm{r}\right) \quad(\mathrm{R}-200)=200 / 9.8 \times\left(4.7^{2} / 2.8\right)$
giving $R=161+200=361(N)$
(c) (i) Mass of small ring dm $=\rho 2 \pi r$.dr

Integral set up with limits from r_{1} to $r_{2}\left(r_{1}=0, r_{2}=R\right)$
Identifies and substitutes total mass of disc $M=\rho \pi R^{2}$
$I=1 / 2 \mathrm{MR}^{2}$
$I=\int\left(r^{2} \Delta m\right)=\int_{-2}^{2} p 2 \pi r^{3} d r=\left[\frac{1}{2} p \pi R^{4}\right]=\frac{1}{2} M R^{2}$
(ii) $10.1=44.8 \times(1.40-0) / \mathrm{t}$
$\mathrm{t}=6.21$ (s)
[2]
(iii) $\mathrm{t}=(118 \times 1.40) / 10.1=16.4 \mathrm{~s}$
$\Delta t=16.4-6.2=10.2(\mathrm{~s})$
(iv) 1. angular momentum is conserved
I increases so ω decreases
ω decreases so Tincreases
Allow last 2 marks even if conservation of k.e. is suggested
2. $\mathrm{T}_{1}=2 \pi / 1.40=4.49 \mathrm{~s} \quad \mathrm{~T}_{2}=4.49+0.66=5.15 \mathrm{so}^{2} \omega_{2}=1.22 \mathrm{rad} \mathrm{s}^{-1}$
$I_{1} \omega_{1}=I_{2} \omega_{2} ; 118 \times 1.40=I_{2} \times 1.22 ; I_{2}=135 \mathrm{~kg} \mathrm{~m}^{2}$
Do not allow any marks here if conservation of k.e. is used uses principle of conservation of angular momentum
[Total: 20]

Page 8	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	03

9 (a) Resultant (force)
force (exerted on a body) is proportional to the rate of change in momentum
(b) $\mathrm{dm} / \mathrm{dt}=\mathrm{F} / \mathrm{v}=34700 \mathrm{kN} / 2.6 \mathrm{~km} \mathrm{~s}^{-1}$
$\mathrm{dm} / \mathrm{dt}=13300\left(\mathrm{~kg} \mathrm{~s}^{-1}\right)$
(c) (i) Working line shown and clear conversion of natural logs to exponentials
(ii) In table
$\mathrm{m} / \mathrm{m}_{\mathrm{o}}=0.88$
$\Delta v_{r}=7.7(4)$
(iii) 8 points correctly plotted (ecf their table values)

One mark lost for each error, minimum of zero
Best fit smooth curve drawn
(1) $[3]$
(iv) With $V=2.6 \times 10^{3} ;\left(\mathrm{m} / \mathrm{m}_{0}\right)=0.15 \mathrm{~m}=0.15 \times 2.04 \times 10^{6}=306000 \mathrm{~kg}$

With $V=8.0 \times 10^{3} ;\left(\mathrm{m} / \mathrm{m}_{0}\right)=0.54 \mathrm{~m}=0.54 \times 2.04 \times 10^{6}=1101600 \mathrm{~kg}$
Difference in mass $=796000 \mathrm{~kg}$
(d) (i) $\mathrm{E}=-\left(G M_{\mathrm{E}} m_{\mathrm{S}}\right) /(R+h)$
(ii) The amount of work done on the mass
(in moving the mass) from infinity to the point (where the satellite is)
(iii) $\mathrm{KE}=0.5 \times 152 \times\left(7.7 \times 10^{3}\right)^{2}=4.5 \times 10^{9}$
$P E=$ total energy $-\mathrm{KE}=-4.5 \times 10^{9}-4.5 \times 10^{9}=-9.0 \times 10^{9}$
$-9.0 \times 10^{9}=-\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times 152}{r}$
$r=6.736 \times 10^{7}$
$h=6.736 \times 10^{7}-6.36 \times 10^{6}=3.76 \times 10^{5} \mathrm{~m}$
[Total: 20]

Page 9	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	03

10 (a) (i) Reciprocal of capacitance
(ii) $\quad I=Q / t=(120) / 2.4$
$=50 \mathrm{~mA}$ (i.e. getting the power of 10 correct)
(iii) (During the charging process charge builds up on the capacitor plates)

The increasing charge repels oncoming charge more and more
so less charge is added to the plates each second OR as p.d. across capacitor rises there is less p.d. across resistance of circuit 1 so less current
(b) (i) Reasonable sized tangent drawn to graph at t $=30 \mathrm{~ms}$

Mandatory mark for any marks on this question and so $Q=42 \mathrm{mC}$

Rate of flow of charge between 1.40 and $1.54\left(\mathrm{C} \mathrm{s}^{-1}\right)$
(ii) 1 t/CR has no units so $C R$ has same units, s , as t

2 e.g $60 \times 10^{-3}=120 \times 10^{-3} \times \mathrm{e}^{-0.02 / C R}$
$C R=0.0289$
$3 C$ from (a)(i) is $120 \times 10^{-3} \mathrm{C} / 2000 \mathrm{~V}=6.0 \times 10^{-5} \mathrm{~F}$ e.g. so $R=0.0289 / 6.0 \times 10^{-5}=480(\Omega)$

4 Mark for each of following terms:

- $Q_{0} / C R$
$e^{-t C R}$
(c) (i) Quote Coulomb's law

Reference to work done to move Q_{2} through small distance
i.e. $\delta W=F \delta x$ [ignore references to 'against the field']

Mathematical integration statement with limits.
Accept summation with limits.
$W=\int \delta W$ from ∞ to $r \quad$ or $W=\sum \delta W$ from ∞ to r Integration statement only (ignore limits omission)
$\int Q_{1} Q_{2} / 4 \pi \varepsilon_{0} x^{2} d x$
See substitution $W=Q_{1} Q_{2} / 4 \pi \varepsilon_{0}[1 / r-1 / \infty]$ [ignore any confusion resulting from misplaced minus signs. Look for essential idea]
[3]
(ii) Explains that the zero of p.e. is at infinity (no credit for just inserting the limit in the integration)

Page 10	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	03

11 (a) Basic answer: Motion affects the rate of clocks (or rate at which time passes)
More detail: Moving clocks run slow / time passes more slowly in a moving reference frame

Idea of comparison between rest and moving frames:
Compared to a clock at rest
Maximum 3 marks
(b) The effect is so small that it can be neglected.

Calculation of time dilation factor: $\gamma \sim 1+0.5 \times 10^{-14}=1.000000000000005$
Calculation of time difference $=5 \times 10^{-15} \times 3 \times 10^{5} / 30=5 \times 10^{-11} \mathrm{~s} \quad$ (i.e. 50 ps)
(c) (i) 1.048 (not using approximation)
(Award 1 mark only if approximation has been used to give $\gamma=1.045$)
(ii) Time elapsed on station clock $=3.0 \times 10^{5} / 30=10^{4} \mathrm{~s}=2 \mathrm{~h}, 47 \mathrm{~min} 40 \mathrm{sec}$

Time elapsed on train clock $=10^{4} / 1.048=9542 \mathrm{~s}$
Adjustment required $=458$ seconds (7 minutes 38 seconds)
Train clock must be put forward
(iii) Agree. Traveller has lived through a different amount of time than a person who stayed at the station
Less time has elapsed for traveller so he has travelled into the future relative to the station
(d) Correct basic shape:

Horizontal from γ-intercept (at $\mathrm{v}=0$)
γ close to $1(<1.5)$ for $v<50 \mathrm{~ms}^{-1}$, rising rapidly for large v
$\gamma=1$ (marked on γ-axis) when $v=0$
Curve appears asymptotic to speed $=100 \mathrm{~m} / \mathrm{s}$
(e) Any two from:

No time dilation effects
No length contraction / mass increase with velocity
Infinite energies (from $E=\mathrm{mc}^{2}$)
Faster communications
No limiting speed for travel (or information transfer)

12 (a) It is mainly empty space
It has structure / atoms are not fundamental
Nuclear matter has extremely high density Maximum 2 marks
(b) (i) (F) $=\frac{1}{4 \pi \times 8.85 \times 10^{-12}} \times \frac{\left(1.6 \times 10^{-19}\right)^{2}}{\left(1 \times 10^{-15}\right)^{2}}$

229N
This is very large / ezuivalent to a weight of 23 kg i.e. recognition that this force is comparable to macroscopic forces
(ii) 1. Strong and attractive because it balances/overcomes proton-proton repulsion.
2. Short range because it has no macroscopic effects / it is negligible compared to electrostatic forces over the distance of the atom / otherwise all nucleons would clump together
(c) (i) $\Delta t \approx \frac{\mathrm{~h}}{2 \pi \mathrm{mc}^{2}}$
(ii) Mesons (have mass so they) cannot travel at or above the speed of light

The maximum distance a meson can travel is about (no more than) $R \sim c \Delta t$
Strong interaction cannot exceed the distance a meson can travel during Δt Maximum mark 2
(iii) Use of $R \sim c \Delta t$ to give an expression for mass: $\mathrm{m} \approx \frac{\mathrm{h}}{2 \pi \mathrm{cR}}\left(\approx \frac{\mathrm{h}}{2 \pi \mathrm{cx} \mathrm{x}^{2} \Delta \mathrm{t}}\right)$
(iv) State that about $1 / 5$ of a proton mass and 400 electron masses.

Must be a new kind of subatomic particle.
[3]
$3.5 \times 10^{-28}(\mathrm{~kg})$
[2]
(d) (i) For a long range they must exist for a long time (Δt must be large without limit)

The uncertainty in energy must be very small ($\Delta \mathrm{E}$ must be very small)
(ii) Full credit for an explanation in terms of exchange particles that identifies and explains either the increased rate of exchange of force-carriers or the increased energy/momentum associated with each exchange at short distance.
e.g. At shorter distances the exchange particles exist for a shorter time so they can exchange more energy/transfer more momentum and create a stronger force.
e.g. At short distances the field is stronger so more exchange particles can be created and exchanged thereby increasing the force.

Give part credit for answers that refer to the coulomb's law / inverse-square law (i.e. as r gets smaller $1 / r^{2}$ gets bigger) but limit maximum to 1 mark if exchange particles are not mentioned.

Page 12	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	03

13 (a) (i) The Law of Conservation of Energy OR The $1^{\text {st }}$ Law of Thermodynamics.
(ii) The Second Law of Thermodynamics

Need to identify both laws for 1 mark
(b) The Second Law (no mark)

If time runs from past to future entropy increases, but if time is reversed entropy decreases
(c) (i) Entropy is related to the arrangement or organisation of particles in the egg The original state is low entropy and the final state high entropy

The original state is low entropy because it is more ordered or has a lower probability or is realised in fewer ways than the final state
(ii) There are a very large number of ways in which the particles can be arranged.

Mixing is a random process
The number of ways in which the egg can be in a scrambled/mixed state is much
greater than the number of ways it can be in an unmixed state
Hence it is much more likely to end up in a mixed state
The mixed state represents a (macroscopic) equilibrium
Maximum mark 3
(N.B. these marks can be observed in either c (i) or $\mathrm{c}(\mathrm{ii})$)
(d) Idea that the direction from past to future is aligned with or defined by the direction of increase of entropy (or the direction of ever increasing 'disorder')
Accept the idea that the universe is moving from a state of low entropy to one of high entropy or from a state of low probability to one of higher probability
(e) (i) There is only one way in which the universe can exist
so there is no distinction between past and future (nothing changes)
(ii) Yes - if the gas molecules start in some ordered state
(e.g. all released from one corner of the box)

Then the arrow would point toward an equilibrium state in which they are distributed more or less evenly throughout the container.

Yes - while entropy is increasing.
Discussion of number of ways linked to different macroscopic states - e.g. low number of ways of finding the majority in a single small space, large number of ways of finding them spread throughout the container.

Not possible to define an arrow of time when the molecules are evenly spread.
Not possible to define an arrow of time when entropy is close to a maximum.
Maximum 3 marks

Page 13	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9792	03

(iii) Idea that random particle motions have a small but non-zero probability of moving all the particles into a small region once again. In this case entropy would decrease for a while before increasing once again so there could be a reversal.
OR
Idea that it is a dynamical equilibrium so fluctuations away from equilibrium will occur and some might be quite large, providing periods of time during which entropy decreases - again a reversal of time's arrow.
Maximum 2 marks
(f) Irreversibility requires large numbers of particles

System/universe must have started in a state of low probability/entropy
Random shuffling results in large scale states that can exist in a large number of indistinguishable ways
Systems move from large-scale states that have low probability to large-scale states that have a high probability
Equilibrium states can exist in many more ways than non-equilibrium states.
Look for: large numbers / low entropy initial state / random shuffling / toward states which can exist in large numbers of different ways
Answer must give some explanation for irreversibility to gain full marks
Maximum 3 marks
[Total: 20]

