CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2013 series

9792 PHYSICS

9792/02

Paper 2 (Part A Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		2	Mark Scheme	Syllabus	Paper	,
			Pre-U – May/June 2013	9792	02	
1	(a) (i)	hori: verti	zontal component at A = 63 cos 14 = 61.1 (m s ⁻¹) ical component at A = 63 sin 14 = 15.2 (m s ⁻¹)		(1) (1)	[2]
	(ii)	horiz acc e	zontal displacement = $61.1 \times 4.9 = 300 \text{ (m)}$ ept 299 (m)		(1)	[1]
	(iii)	verti = 74	ical displacement = ut + ½at ² = (15.2 × 4.9) – (½ x 9.81 I.5 – 117.8 = (–)43.0 to 43.3 (m)	× 4.9 ²)	(1)	
		acco	ept 44 (m), ignore sign		(1)	[2]
	(iv)	the $\theta = \theta$	angle of the slope tan θ = 43.3/300 8.2°		(1) (1)	[2]
		at le	east 3 mm along original path and then new path under	B present curve	(1)	[1]
	(ii)	1.	path determined by movement of club or caused by sa direction or air resistance has acted for short time not if path stated to be different	ame force in same	(1) (1)	[.]
		2.	(air resistance) reduces upward velocity/deceleration allow WD against air resistance; not if height is greate (air resistance) reduces forward velocity not if maximum height is later	er	(1) (1)	
		3.	forward/horizontal velocity (much) reduced not if angle smaller		(1)	[4]
					[Total:	12]

	Page 3			Mark Scheme	Syllabus	Paper	•
				Pre-U – May/June 2013	9792	02	
2	(a)	(i) (ii)	mgh 96.5 kine ½mv v = ^ mon	$u = 6.0 \times 9.81 \times 1.64$ i(J) tic energy = 96.5 + 134 = 231 (J) $v^2 = 231 \text{ so } v^2 = 461/6$ $\sqrt{(460/6.0)} = 8.77 \text{ (m s}^{-1})$ nentum = 8.77 × 6 = 52.6 (52.596) (N s)		 (1) (1) (1) (1) (1) (1) 	[3] [3]
	(b)	forc = 52 acc	e = n 2.6/0 e pt 4	nomentum/time = 0.013 = 4046 (N) 4050/4060		(1) (1)	[2]
	(c)) (because of the small time) the force is very large constant impulse/change of momentum or greater rate of change of momentum					[2]
						[Total:	: 10]
3	(a)	(i) (ii)	heat = 2.7 heat total	t energy for raising temperature = $mc\Delta\theta = 65 \times 4200 \times 10 \times 10^7$ (J) t energy for conversion to steam = $65 \times 2.26 \times 10^6 = 1$. heat required = 1.68×10^8 (J) er = 1.68×10^8 /time 68×10^8 (1200 = 140.000 (M)	77 47 × 10 ⁸ (J)	(1) (1) (1) (1) (1)	[4]
	(b)	(i) (ii)	pow = 18 effic NOT	er output = force x speed $300 \times 3.2 = 5760 (W)$ iency = 5760/140000 = 4.1 (%) or 0.041 $\Gamma 0.041\%$		(1) (1) (1)	[2] [1]
						[Tota	l: 9]

	Page 5			Mark Scheme	Syllabus	Paper	,
				Pre-U – May/June 2013	9792	02	
5	(a)	radio ultra	o wav Isour	vaves, microwaves and UV are transverse waves and und is a longitudinal wave (-1 e.e.o.o.)			[2]
	(b)	a (tr igno diag	ansv o re d ram	erse) wave in which all the oscillations take place in or irection showing this (in contrast to a non-polarised wave)	ne plane	(1) (1)	[2]
	(c)	(i)	amp igno	litude = A cos 30 = 0.87 <i>A</i> o re √3/2		(1)	[1]
		(ii)	30° t	to the vertical		(1)	[1]
	(iii)	amp inter inter	litude = $A \cos 30 \times \cos 30 = 0.75 A$ nsity \propto amplitude ² nsity = $I \times 0.75^2 = 0.56(25) I$		(1) (1)	
			pena	alise fractions only once		(1)	[3]
						[Tota	l: 9]
6	(a)	(i)	132	to 135 mm		(1)	[1]
		(ii)	phas	se difference = 180 degrees or π radians		(1)	[1]
	(iii)	actua (<i>D</i> = perc	al value of $s = 2 \times 25 \text{ mm} = 49 \text{ to } 51 \text{ mm}$ 132 mm, $a = 22 \text{ mm}$, $s = 8 \times 132/22 =) 48.4 \text{ mm}$ entage difference = (1.6 in 50 ×100 =) 3.2%		(1) (1) (1)	[3]
	(iv)	any t the ii B is the s	two from: ntensity of the wave from B will be less than that from <i>i</i> further from X than A slit widths are not negligible (so situation is more comp	A lex than assumed)	
			smal	Il angle approximation has been made or sin $\theta \approx \theta$		(2)	[2]
	(b)	the a dete cons mod	ampli ermin stant lulate	itude of one high frequency wave, the carrier, varies in ed by the amplitude of another wave (the modulating v period of carrier wave or period much less for carrier v ed amplitude	a manner vave, the signal) wave	(1) (1) (1)	[3]
	(c)	lowe	est fre	st frequency = 200 Hz		(1)	
		mide	iddle trequency = 3 times lowest trequency (allow 4 times/800 Hz) = 600 Hz				
		nigne		ignest frequency = $11 - 14$ times lowest frequency = $2500 \pm 300 \text{ Hz}$		(1)	[3]
						[Total:	: 13]

Page 6			6	Mark Scheme Syllabus			
				Pre-U – May/June 2013	9792	02	
7	(a)	(i)	E = = = =	hc/ λ (and knowing what the terms mean) $6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 6.44 \times 10^{-7} = 3.09 \times 10^{-19}$ (J) $3.09 \times 10^{-19} / e$ $3.09 \times 10^{-19} / 1.60 \times 10^{-19} = 1.93$ (eV)		(1) (1) (1) (1)	[2] [2]
		(ii)	7. 2.	$87 W/3.09 \times 10^{-19} (J)$ $55 \times 10^{19} (s^{-1})$		(1) (1)	[2]
	(b)	(too eleo funo	o) low ctrons ction	r energy photons/(too) long wavelength/(too) low freques in most metals (except sodium and potassium) requir in metals high/work function low/below threshold freq	uency e UV radiation/v uency	(1) work (1) [Tota	[2] I: 8]
8	(a)	(i)	(tota or 1 2.53	al no. of atoms =) number of atoms of isotope/abundar .82×10 ²² /0.00718 or 1.82×10 ²² /0.0000718 or 2.53 (4 6 (4818942)×10 ²⁴	nce ratio 1818942)×10 ⁿ	(1) (1)	
		(ii)	2.13 1.46	3×10^{9} /7.10 × 10 ⁸ or 3 half-lives or 2 ³ or 1/2 ³ or 8 × 1.82 5 (1.456) × 10 ²³	× 10 ²²	(1) (1)	
		(iii)	0.03 allo	9890410964.00 or 0.0400 or 3.989041096% or 4.00% w 0.04 from 1.46 × 10 ²³ /3.65 × 10 ²⁴	, 0	(1)	
		(iv)	too f aton chai nucl	few uranium-235 atoms (in naturally occurring uranium nic abundance ratio too low (in naturally occurring uran nce of further fission, 1 or chance of 1 neutron hitting eus too low or not enough neutrons emitted) or ium) another (U-235	(1)) (1)	[7]
	(b)	(i)	at le two	ast one β emission or $^{234}_{91}$ X or $^{234}_{91}$ Pa β emissions		(1) (1)	
		(ii)	new in eo as n aton	uranium-234 atoms created (somehow/by decaying u quilibrium with uranium-238 or decay at same rate as p umber of uranium-238 atoms decreases, so does num ns	iranium-238) produced or ber of uranium-2	(1) 234 (1)	[4]
	(c)	(i)	1. 2.	57 89		(1) (1)	
		(ii)	1. 2.	$0.181 \times 1.66 \times 10^{-27} \times (3.00 \times 10^8)^2$ or $0.181 \times (3.00 \times 10^8)^2$ $1.63/1.629 \times 10^{16}$ $2.70(414) \times 10^{-11}$ (J) $4.92(15348) \times 10^{11}$ (J) (do not penalise J/kg as wrong unit)	^a) ² or	(1) (1) (1)	[5]

Page 7		,	Mark Scheme Syllabus		Paper	
			Pre-U – May/June 2013	9792	02	
(.I)	(1)			- h		
(a)	(1)	all u	ranium atoms undergo the same chemical reactions/b	enaviour/prope		
		igno	re chemical means		(1)	
	(ii)	more	e liberated neutrons can escape through the sides of th	ne rod before hit	tina	
	()	anot	her uranium-235 nucleus or large surface area to volu	me ratio	(1) [2]	
			Ŭ			
(e)	soc	cial				
	poli	tical/	'nimby' opposition		(1)	
	terr	orist t	target / dirty bomb		(1)	
	acc		s unlikely		(1)	
	Juna	ttract	iy (in rural/coastal aroas)		(1)	
	iohe	s cres	ated		(1)	
		erate o	continuously		(1)	
	larc	e pov	wer output		(1)	
	(pu	blic p	erception of) leading to nuclear weapons		(1)	
	env	/ironr	mental			
	no	CO ₂ e	emitted/small carbon footprint/no greenhouse gases e	mitted / less glo	bal	
	war	ming			(1)	
	rad	ioacti	ve waste long lasting		(1)	
	rad		ve waste dangerous		(1)	
	rad	iation	escape to surroundings		(1)	
	dan	nder o	f tsunami/earthquake		(1)	
	volu	ume c	of waste small		(1)	
	sma	all are	28		(1)	
	min	ing fo	or uranium dirty		(1)	
	long	g tern	n storage needed		(1)	
	ecc	nom	ic			
	exp	ensiv	e to build		(1)	
	exp		e maintenance		(1)	
	ann	Cuit/e	expensive disposal of waste		(1)	
	cre	easii ates i	obs (do not credit twice)		(1)	
	dec	comm	issioning costs		(1)	
	fuel	l chea	ap/power station cheap to run		(1)	
	fuel	labur	ndant		(1)	
	eas	sy to t	ransport		(1)	
	at le	east t	wo from each category		[max 7]	

[Total: 25]