

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9792 PHYSICS

9792/03

Paper 3 (Part B Written), maximum raw mark 140

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page	2	Mark Scheme: Teachers' version	Syllabus	Paper	
			Pre-U – May/June 2012	9792	03	
1	со	rrect t	ocity labelled in correct direction riangle completed nge in velocity labelled in correct direction		(1) (1) (1)	[3]
	(b) (i)	K.E. gain K.E.	of P.E. = $560 \times 9.81 \times 25.0 = 137\ 340\ J$ at top = $\frac{1}{2} \times 560 \times 10^2 = 28\ 000\ J$ of K.E. = $137\ 340 - 40\ 000 = 97\ 340\ J$ at bottom = $125\ 340\ J = \frac{1}{2} \times 560 \times v^2$ $\sqrt{(2 \times 125\ 340\ /\ 560)} = 21.2\ m\ s^{-1}$		(1) (1) (1) (1) (1)	[5]
	(ii)	т×	ght of carriage = 560 × 9.81 = 5494 N (force 1 or 2) a = m × (v² /r) = 560 × 21.16² / 18.0 = 13930 N apward force from track = 19 420 N (force 2 or 1)		(1) (1) (1)	[3]
	(iii)	diag	ram showing two forces with upward force larger than	force down	(1)	[1]
	(iv)		ard force is an (electrical) contact force (allow reaction) nward force is a gravitational force)	(1) (1)	[2]
					[Total:	: 14]
•	() (1)					[4]
2			oscillation in which frictional forces are zero (negligible)		(1)	[1]
	(ii)	an c	cillation where the amplitude is decreasing OR oscillation where frictional forces exist OR re the energy of the oscillation is decreasing		(1)	[1]
	(iii)		escillation where the amplitude is maintained by energy external source	being supplied by	(1)	[1]
	(b) (i)	1.	at the resonant frequency $\omega = 2\pi f = 2\pi \times 35.5 = 223$ ra use of $A = 0.0114$ in equation $E = \frac{1}{2}mA^2\omega^2$ $= \frac{1}{2} \times 0.046 \times 0.0114^2 \times 223^2 = 0.149$ J	d s ^{−1}	(1) (1) (1)	[3]
		2.	amplitude read correctly as 0.0041 m giving energy as $\frac{1}{2} \times 0.046 \times 0.0041^2 \times (40\pi)^2 = 0.006$	1J	(1) (1)	[2]
	(ii)		e starting point and lower graph peak imum amplitude at lower frequency within original shap	e	(1) (1)	[2]
					[Total:	: 10]
3	(i) mi	nimun	n work required = <i>mgh</i> = 50 × 9.81 × 400 = 196 000 J		(1)	[1]
	(ii) gra m ²	gravitational potential = gh = 9.81 × (600 – 200) = 3920 m ² s ⁻² OR Nm kg ⁻¹ OR J kg ⁻¹			(1) (1)	[2]
	• •	•	to make lines cross contour lines at right angles [1] for every two glaring discrepancies of this (to minim	um zero)	(2)	[2]
	(iv) the	e grav	itational field is vertically downward / into page		(1)	[1]

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	
			Pre-U – May/June 2012	9792	03	
	(b) (i)		empt to make lines cross equipotentials at right angles ows in the correct direction		(1) (1)	[2]
	(ii)	1.	work done = QV = 50 × 10 ⁻⁶ C × 400 V = 0.020 J		(1) (1)	
		2.	work done = $50 \times 10^{-6} \text{ C} \times -400 \text{ V} = -0.020 \text{ J}$		(1)	[3]
					[Total:	11]
4	(a) (i)) 1.	work done = $p\Delta V = 5.7 \times 10^6$ Pa x (3.1 – 2.0) × 10 ⁻⁵ m ² = 62.7 J	3	(1) (1)	
		2.	zero		(1)	[3]
	(ii)	$\frac{P_{\rm B}}{T}$	$\frac{V_{A}}{T_{B}} = \frac{P_{B}V_{B}}{T_{B}}$		(1)	
		T _B	$=\frac{P_{\rm B}V_{\rm B}T_{\rm A}}{P_{\rm A}V_{\rm A}}=\frac{5.7\times10^{6}\times2.0\times10^{-5}\times300}{1.0\times10^{5}\times36\times10^{-5}}$		(1)	
			= 950 K		(1)	[3]

(b)

section of cycle	heat supplied to the gas / J	work done on the gas / J	increase in the internal energy of the system / J
$A \rightarrow B$	0	235	235 A
$B \rightarrow C$	246	– 63 C	183 B (sum of 246 and –63)
$C \rightarrow D$	0	- 333	– 333 D
$D \rightarrow A$	–85 E	0 C	235 + 183 –333 = – 85 E

A (1), **B** (1), **CC** (1), **D** (1), **EE** (1)

(5) [5]

	Page 4	ŀ	Mark Scheme: Teachers' version	Syllabus	Paper	
			Pre-U – May/June 2012	9792	03	
	(c) (i)		iency = $\frac{396 - 235}{246}$ = 0.65 or 65% 1 - T_1/T_2 = 1 - 300 / 950 = 0.68 or 68%		(1)	[1]
	(ii)	the of fricti	reasons e.g. graph is idealised so will (curl at the corners) not be the on will reduce forces gas is not an ideal gas	e exact shape	(1) (1) (1)	[2]
					[Total:	14]
5	(a) ²¹⁰ 84	⊃ 0→	${}^{4}_{2}\alpha + {}^{206}_{82}Pb$ (1) (1)			[2]
	(b) (i)	ratio	∋ =(−) 1		(1)	[1]
	(ii)		$m = m_{\rm Pb}/m_{lpha}$ $m_{\rm Pb}/m_{lpha}$ $m_{\rm Pb}/m_{lpha}$		(1) (1)	[2]
	(iii)	ratio = 51	$= (m_{\alpha}/m_{Pb}) \times (v_{\alpha}/v_{Pb})^{2}$.5		(1) (1)	[2]
	In(8	N/N ₀) 350/24	$= -\lambda t$ 4000) = -3.3406 = -(ln2 /138) × t 3.3406 / ln2 = 665 days (= 5.75 × 10 ⁷ s)		(1) (1) (1)	[3]

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper	•
			Pre-U – May/June 2012	9792	03	
6	(a) (i) (ii)	value	es $n = 1$ $E_1 = -13.6$ (eV) $n = 2$ $E_2 = -3.40$ (eV) $n = 3$ $E_3 = -1.51$ (eV) $n = 4$ $E_4 = -0.85$ (eV) $n = 5$ $E_5 = -0.54$ (eV) -1 for each error is shown not to scale but sensibly positioned	or	(2) (1)	[3]
	(b) all s	showr	1		(1)	[1]
	(c) (i)	phot	on energy = -0.54 - (-3.40) = 2.86 eV		(1)	[1]
	(ii)	wave	on energy = 2.86 eV × 1.6 × 10 ⁻¹⁹ JeV ⁻¹ = 4.58 × 10 ⁻¹⁹ elength = <i>hc/E</i> 63 × 10 ⁻³⁴ × 3.0 × 10 ⁸ / 4.58 × 10 ⁻¹⁹ = 4.34 × 10 ⁻⁷ m	, J	(1) (1) (1)	[3]
	(d) infra	a-red	transition – any excluding falls to levels 1 or 2		(1)	[1]
	(e) ultra	a-viol	et		(1)	[1]
					[Total:	: 10]
7	(a) (i)		0.0000255 = 1.50 × 10 ¹¹ / <i>x</i> 1.50 × 10 ¹¹ / sin 0.0000255 = 3.37 × 10 ¹⁷ m (or tan)		(1) (1)	[2]
	(ii)	= 3.	nosity = luminous flux × area = $3.6 \times 10^{-9} \times 4\pi r^2$ 6 × $10^{-9} \times 4\pi (3.37 \times 10^{17})^2 = 5.14 \times 10^{27}$ tt) or J s ⁻¹		(1) (1) (1)	[3]
	(iii)	3.6 >	nous flux $\propto 1/d^2$ < $10^{-9} \times (3.37 \times 10^{17})^2 = 8.3 \times 10^{-11} \times y^2$ /(360 / 8.3) × 3.37 × $10^{17} = 2.22 \times 10^{18}$ m		(1) (1) (1)	[3]
	540	, for S) × 58	1/T Sun = 540 nm, λ_{max} for Y = 800 nm, 00 = 800 × T_y × 5800 / 800 = 3900 (± 200) K		(1) (1) (1) [Total:	[3] : 11]

	Page 6			Teachers' version	Syllabus	Paper	,		
			Pre-U – M	ay/June 2012	9792	03			
8	(a) res	istivity	y = (resistance × cross se	ction area) / length		(2)	[2]		
	(b) A = R =	= l² = pl/tl	= <i>p/t</i>	substitution for area cancel <i>l</i> from equation		(1) (1)	[2]		
	(c) (i)	1/16	= 1/R _C + 1/R _L i00 = 1/1650 + 1/R _L i 52 800 Ω	recall formula – realise laye correct substitution answer $53000~(\Omega)$	rs are in parallel	(1) (1) (1)	[3]		
	(ii)		00 = (ρ × 0.9)/(0.4 × 0.05) 170 (Ω m)	substitution – ignore powers correct value for ρ	s of ten errors	(1) (1)	[2]		
	(d) (i)	= (-) = 1.4	dt = (–) ε /N) (84 × 10 ⁻³ × 1)/60 4 × 10 ⁻³ s: Wb s ⁻¹ or V	use formula answer unit		(1) (1) (1)	[3]		
	(ii)	is di	ced emf rectly proportional to rate of change in flux (link	age)		(1) (1) (1)	[3]		
	(iii)	•	magnetic field created by permanent magnetic field work has to be done to n it is repelled	e of law of conservation of er induced current in coil repels	s coil because	 (1) (1) (1) (1) 	[2]		
	(e) 3 complete oscillations drawn period kept constant reasonably symmetrical and steady decrease in amplitude					(1) (1) (1)	[3]		

Pa	Page 7					achers' vers	sion		abus	Paper	
				Pre-	U – May	/June 2012		9/	792	03	
9 (a)	the and OR	equi d is a	librium po lways dire	bint) ected towa	rds that p	proportional point ation of each		·		(1) (1) inus	
	sig									(2)	[2]
(b)) d ² 2	x/d <i>t</i> ²	$= -\omega^2 x$							(1)	[1]
(c)									1		
				В	С	D	E	F	-		
	di	splac	ement	+	0	_	0	+			
	ve	elocit	y	0	_	0	+	0			
	ac	cele	ration	_	0	+	0	_	-		
	dis acc vel	place celera ocity	ement line	e correct opposite to 3 D & F as	displace	D (+0–0+ or ement line. answers to		onsistent v	vith their	(1) (1) (1) (1)	[4]
(d)) (i)		ise differe 90°	nce betwe	en displa	cement and	velocity is	π/2 OR 3π	/2 radians	s (1)	
	(ii)		blacemen ians OR 1		leration a	are exactly o	ut of phas	e OR out c	of phase b	by π (1)	[2]
(e)) (i)	1.	amplitud	e = 8 cm, 7	r = 2.0 s	so f = 0.5	(Hz)			(1)	[1]
	(ii)	1.	F = mAa = 0.02 × = 0.0158	0.08 × (2π	,	convert to kg answer 0.016		d substitute	9	(1) (1)	[2]
		2.	negative for at lea	cos graph ist 3.5 s	of any a	mplitude				(1) (1)	[2]

	Pa	ige 8		Mark Scheme: Teacher		Syllabus	Paper				
				Pre-U – May/June	2012	9792	03				
	(f)	(i)		that $I = \Sigma r^2 \Delta m$ or equivalent integrand Δm defined accept clear lab			(1) (1)	[2]			
		(ii)	0.20 2.07	× $I \sin\theta = \frac{1}{2} I \omega^2 + \frac{1}{2} mv^2$ × 9.81 × 2.5 sin25 = ($\frac{1}{2} 0.10 \times 10$ 3 = (0.05 × 10 ⁻⁴ ω^2) + (1.384) 13.78 × 10 ⁴	$^{-4} \omega^2$) + (½ 0.20 × 3.	72 ²)					
		•		formula quoted or used i.e. RKE = energy equation quoted in symbo		in words	(1)				
				$mgh = \frac{1}{2}I\omega^2 + \frac{1}{2}mv^2$ or $mg \times I$ sin			(1)				
		•		correct substitution Inswer $\omega = 371$ (rad s ⁻¹)							
		•	OR	wer $\omega = 371$ (rad s)			(1)				
			alternative method and correct answer for candidates who work out or know that $I = \frac{1}{2}mr^2$								
10	(a)	(i)	sam	e mass			(1)				
		(ii)	орро	osite charge or opposite spin			(1)	[2]			
	(b)	(i)	∆E =	$c^{2}m$	correct substitution		(1)				
			= (3. = 1.6	.00 × 10 ⁸) ² × 2 × 9.11 × 10 ⁻³¹ 64 × 10 ⁻¹³ (J)	ans: 1.6 × 10 ⁻¹³ (J)		(1)	[2]			
		(ii)	$f = (\frac{1}{2})$	¹ / ₂ ΔE)/h 5 × 1.64 × 10 ⁻¹³)/6.63 × 10 ⁻³⁴	halve energy in (b)	(i)	(1)				
				24 × 10 ²⁰ (Hz)	ans: 1.2 × 10 ²⁰ (Hz)	(1)	[2]			
	(c)	(i)		e is a range of energies			(1)				
				gy per decay is constant / energy neutrino) particle has the remaining			(1) (1)				
		(ii)	78 =	79 + –1 hence antineutrino must	have zero proton nu	umber	(1)	[4]			
	(d)	e.g. 400 = 800 e ^{-μ8} accept either <i>C</i> = <i>C</i> ₀ e ^{-μx} or <i>I</i> = <i>I</i> ₀ e ^{-μx} In 2 = 8 μ μ = 0.0866 mm ⁻¹ OR 86.6 m ⁻¹									
		$C_0 = 800 \text{ (s}^{-1}\text{)}$ consistent values for x and C from graph $\mu = 0.087 \text{ OR } 87$ unit: m ⁻¹									

	Page 9			Syllabus	Paper	,
			Pre-U – May/June 2012	9792	03	
	(e)	(i)	$\lambda = h/mv$ giving expression for angular momentum, mvr	= <i>nh</i> /2π	(1)	[1]
		(ii)	angular momentum = $(4 \times 6.63 \times 10^{-34})/2 \times 3.142$ = 4.22×10^{-34} (Js)		(1)	
			units must be same as those for <i>h</i> i.e. J s accept kg m ² s ⁻¹		(1)	[2]
		(iii)	$E_{I} = \{9.11 \times 10^{-31} \times (1.6 \times 10^{-19})^{4}\} / \{8 \times (8.85 \times 10^{-12} \times 6. = 21.68 \times 10^{-19} (\text{J})\}$	63 × 10 ⁻³⁴) ² }		
			correct values for symbols used correct substitution answer 2.2 × 10 ⁻¹⁸ (J)		(1) (1) (1)	
			there is no credit for quoting 13.6 eV from memory or for s this value to joules	simply converting		[3]
					[Total:	20]
11	(a)	the	laws of physics are the same for all inertial (uniformly mov	ing) observers	(1)	[1]
	(b)	the	speed of light is <u>a constant for all inertial (uniformly moving</u>	<u>a) observers</u>	(1)	[1]
	(c)	(i)	gamma-rays are part of the electromagnetic spectrum			
			OR all EM waves travel at the speed of light		(1)	[1]
		(ii)	photons have momentum momentum would not be conserved		(1) (1)	[2]
	(d)	(i)	the speed of light in the laboratory is independent of the s	peed of the source	(1)	[1]
		(ii)	c (or 3.0 × 10^8 ms ⁻¹) accept 'the speed of light'.		(1)	[1]
		(iii)	if a clock moves relative to an observer then its rate is slo clock at rest relative to the same observer (look for clari correct explanation) note: partial answer scores one mark, e.g. time passes differently moving observers OR moving clocks run at diffe	ty of explanation an at different rates fo	d (2) or	[2]
		(iv)	$\gamma = \frac{1}{\sqrt{1 - 0.20^2}} = 1.021$		(1)	
			$\sqrt{1-0.20^2}$ half-life in laboratory reference frame = 1.021 × 18 ns = 18	3.4 ns	(1)	[2]

	Pa	ge 1(0	Mark Scheme: Teachers' version	Syllabus	Paper	•
				Pre-U – May/June 2012	9792	03	
	(e)	(i)	or 1.	$1 + \frac{300^2}{2(3.0 \times 10^8)^2} = 1 + 5 \times 10^{-13}$ 000000000000000000000000000000000000			
				rd 1 mark for correct substitution rounded to 1 (no mor dec. pt.)	e than 12 zeros	(2)	[2]
		(ii)	1.	$\Delta t = 5 \times 10^{-13} \times 50 \times 3600 \mathrm{s} = 90 \mathrm{ns}$		(1)	
			2.	decreases the time		(1)	[2]
		(iii)	calcu than calcu grea such if ch resu if ch conc	three points from: ulation that a drift of 5 ns per hour is 250 ns total in 5 expected time difference) ulation that 100 ns gain/loss per day is about 200 ns ter than expected time difference) a large variations in clock rates must cast doubt on the anges in rate can be monitored they can be correct its might be valid langes in rate occur unpredictably and have this is clusion is invalid v other valid points	in 50 hours (a conclusion cted for and sc	(1) ngain (1) (1) o the (1)	[3]
	(f)			is increased/ greater (than expected from simple Dopp ion <u>reduces the frequency</u> of the light source relative t		rce (1)	[2]
						[Total:	: 20]
12	(a)			oice of experimental evidence e.g. electron diffi on or Davis and Germer) / electron diffraction rings	action experim	ients (1)	[1]
	(b)	(i)		eased energy results in shorter wavelength/ higher frec ing is reduced	luency	(1) (1)	[2]
		(ii)		ulate resultant amplitude by superposition ability is proportional to amplitude squared		(1) (1)	[2]
		(iii)	elect all pa the p the r the p N.B.	e points from: trons can reach the minimum by two (or more) paths aths contribute to the resultant amplitude bath differences result in phase differences esultant amplitude is zero probability of arrival is proportional to amplitude-square 3 marks can only be awarded if the answer explain e at the minimum		• • •	[3]

	Pag	e 11		Mark Scheme: Teachers' version Syllabus		Paper	
				Pre-U – May/June 2012	9792	03	
	(c)	(i)		ox. 10 dots distributed at random – no discernible/regu	ılar pattern	(1)	
				0 ms er number of dots – pattern emerging		(1)	
			t = 5 simil	s ar shading to pattern at 2 hours		(1)	[3]
		(ii)		ference effects occur even with single electrons OF themselves	R electrons interfer	e (1)	
			inter	ference effects are not caused by the interaction of dif	ferent electrons	(1)	[2]
	(d)	(i)	wave	efunction collapses		(1)	
			e.g. after obse	e detail must be given for 2 marks: before observation there are non-zero values spread observation the amplitude is zero everywhere exc ervation	cept at the point of	of	
				before observation the wavefunction is a spre ervation it is a spike o.w.t.t.e.	eading wave, afte	er (2)	[2]
		(ii)	the t the p	one point from: heory cannot explain how the wavefunction collapses physical description is discontinuous	of the uncheanter	(1) (1)	
				ntum theory can only account for the behaviour efunction	or the unobserve	u (1)	[1]
	(iii)	desc •	points from: cription of 'Many-Worlds Interpretation' the wavefunction represents a superposition paths/outcomes each alternative path/outcome exists in a different wor	of all possibl Id	e (1) (1)	
				the world 'splits' into many worlds each repre experimental outcome dance of 'the Measurement problem'	senting a differer		
			•	the wavefunction does not collapse so the problem go in each world an observer detects an electron at a diff	•		
				screen		(1)	[4]
						[Total:	20]
13	(a)	com	npres	W used correctly (at least <i>U</i> and <i>W</i> identified) sion: work is done on the gas so its internal er	nergy rises and it		
	temperature goes up expansion: <u>work is done by the gas</u> so its internal energy falls and goes down		and its temperatur	(1) e (1)	[4]		
	(b)			of state – liquid to gas) <u>bonds broken /latent heat abse</u> ne by gas as it expands (increase in volume)	orbed	(1) (1)	[2]

Page 12			labus	Paper		
		Pre-U – May/June 2012 9	792	03		
• •	heat flo the refri	ws from hot to cold <u>and</u> pipes are at a lower temperature thar igerator	ı the inside c	of (1)	[1]	
• •		ure of the number of ways n the energy can be distributed amongst the particles of the bo	dy	(1) (1)	[2]	
	more w	<u>energy is supplied</u> there will be ays in which it can be distributed amongst the particles of the increases)	body (so the	(1) e (1)		
	$OR \\ \Delta S = \Delta G$	Q/T used appropriately with terms defined		(2)	[2]	
(f)	zero			(1)	[1]	
(g)	(i) dec	crease				
	• •	rease st have both (i) and (ii) correct for 1 mark		(1)	[1]	
	that it n OR	ever decreases		(1)		
		ends to a maximum		(1)	[1]	
	electrica when h this add total he note: a environ	oints from: al work <i>W</i> from supply is ultimately dumped as heat in the envi eat is dumped in the environment it increases entropy is to the heat Q_1 extracted from the inside of the refrigerator at dumped <u>increases entropy more</u> than heat Q_2 absorbed red ccept answers that refer to the entropy change of the ref ment in terms of $\Delta S_{OUT} = W + Q_2/T_{OUT} > \Delta S_{IN} = -Q_1/T_{IN}$ for 3 r is are used correctly	uces it frigerator and		[3]	
	-	ature of the room will increase ints from:		(1)		
	heat du energy	mped > heat extracted flows into the system al energy input transferred to heat in room		(1) (1) (1)	[3]	
	[Τα					