# MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 

## 9792 PHYSICS

9792/03
Paper 3 (Part B Written), maximum raw mark 140

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE,
Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

| Page 2 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Pre-U - May/June 2012 | 9792 | 03 |

1 (a) new velocity labelled in correct direction
correct triangle completed
with change in velocity labelled in correct direction
(b) (i) loss of P.E. $=560 \times 9.81 \times 25.0=137340 \mathrm{~J}$
K.E. at top $=1 / 2 \times 560 \times 10^{2}=28000 \mathrm{~J}$
gain of K.E. $=137340-40000=97340 \mathrm{~J}$
K.E. at bottom $=125340 \mathrm{~J}=1 / 2 \times 560 \times v^{2}$
$v=\sqrt{ }(2 \times 125340 / 560)=21.2 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) weight of carriage $=560 \times 9.81=5494 \mathrm{~N}$ (force 1 or 2)
$m \times a=m \times\left(v^{2} / r\right)=560 \times 21.16^{2} / 18.0=13930 \mathrm{~N}$
so upward force from track $=19420 \mathrm{~N}$ (force 2 or 1 )
(iii) diagram showing two forces with upward force larger than force down
(iv) upward force is an (electrical) contact force (allow reaction)
downward force is a gravitational force
(1) [2]
[Total: 14]

2 (a) (i) an oscillation in which frictional forces are zero (negligible)
(ii) a oscillation where the amplitude is decreasing OR an oscillation where frictional forces exist OR where the energy of the oscillation is decreasing
(iii) an oscillation where the amplitude is maintained by energy being supplied by an external source
(b) (i) 1. at the resonant frequency $\omega=2 \pi f=2 \pi \times 35.5=223 \mathrm{rad} \mathrm{s}^{-1}$
use of $A=0.0114$ in equation $E=1 / 2 m A^{2} \omega^{2}$
$=1 / 2 \times 0.046 \times 0.0114^{2} \times 223^{2}=0.149 \mathrm{~J}$

3 (i) minimum work required $=m g h=50 \times 9.81 \times 400=196000 \mathrm{~J}$
(ii) gravitational potential $=g h=9.81 \times(600-200)=3920$
$\mathrm{m}^{2} \mathrm{~s}^{-2}$ OR $\mathrm{Nm}_{\mathrm{kg}}{ }^{-1}$ OR $\mathrm{Jkg}^{-1}$
[2]
(iii) attempt to make lines cross contour lines at right angles
subtract [1] for every two glaring discrepancies of this (to minimum zero)
(iv) the gravitational field is vertically downward / into page

| Page 3 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Pre-U - May/June 2012 | 9792 | 03 |

(b) (i) attempt to make lines cross equipotentials at right angles arrows in the correct direction
(ii) 1. work done $=Q V$
$=50 \times 10^{-6} \mathrm{C} \times 400 \mathrm{~V}=0.020 \mathrm{~J}$
2. work done $=50 \times 10^{-6} \mathrm{C} \times-400 \mathrm{~V}=-0.020 \mathrm{~J}$

4 (a) (i) 1. work done $=p \Delta V=5.7 \times 10^{6} \mathrm{Pax}(3.1-2.0) \times 10^{-5} \mathrm{~m}^{3}$
2. zero
(1) $[3]$
(ii) $\frac{P_{\mathrm{B}} V_{\mathrm{A}}}{T_{\mathrm{A}}}=\frac{P_{\mathrm{B}} V_{\mathrm{B}}}{T_{\mathrm{B}}}$
$T_{\mathrm{B}}=\frac{P_{\mathrm{B}} V_{\mathrm{B}} T_{\mathrm{A}}}{P_{\mathrm{A}} V_{\mathrm{A}}}=\frac{5.7 \times 10^{6} \times 2.0 \times 10^{-5} \times 300}{1.0 \times 10^{5} \times 36 \times 10^{-5}}$
$T_{\mathrm{B}}=950 \mathrm{~K}$
(b)

| section of cycle | heat supplied to the gas / J | work done on the gas / J | increase in the internal energy of the system / J |
| :---: | :---: | :---: | :---: |
| $A \rightarrow B$ | 0 | 235 | 235 A |
| $B \rightarrow C$ | 246 | -63 C | $\begin{gathered} 183 \text { B } \\ \text { (sum of } 246 \text { and }-63 \text { ) } \end{gathered}$ |
| $C \rightarrow D$ | 0 | -333 | - 333 D |
| $\mathrm{D} \rightarrow \mathrm{A}$ | -85 E | 0 C | $\begin{gathered} 235+183-333 \\ =-85 E \end{gathered}$ |

A (1), B (1), CC (1), D (1), EE (1)
(5) [5]

| Page 4 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Pre-U - May/June 2012 | 9792 | 03 |

(c) (i) efficiency $=\frac{396-235}{246}$
(1) [1]

$$
=0.65 \text { or } 65 \%
$$

OR $1-T_{1} / T_{2}=1-300 / 950=0.68$ or $68 \%$
(ii) two reasons e.g.
the graph is idealised so will (curl at the corners) not be the exact shape
friction will reduce forces
the gas is not an ideal gas
[Total: 14]

5 (a)
${ }_{84}^{210} \mathrm{Po} \rightarrow{ }_{2}^{4} \mathrm{\alpha}+{ }_{82}^{206} \mathrm{~Pb}$
(1) (1)
(b) (i) ratio $=(-) 1$
(1) $[1]$
(ii) ratio $=m_{\mathrm{Pb}} / m_{\alpha}$

$$
\begin{equation*}
=206 / 4=51.5 \tag{1}
\end{equation*}
$$

(iii) ratio $=\left(m_{\alpha} / m_{\mathrm{Pb}}\right) \times\left(v_{\alpha} / V_{\mathrm{Pb}}\right)^{2}$
$=51.5$
(c) $N=N_{0} \mathrm{e}^{-\lambda t}$
$\ln \left(N / N_{0}\right)=-\lambda t$
$\ln (850 / 24000)=-3.3406=-(\ln 2 / 138) \times t$
$t=138 \times 3.3406 / \ln 2=665$ days $\left(=5.75 \times 10^{7} \mathrm{~s}\right)$
[Total: 10]

| Page 5 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Pre-U - May/June 2012 | 9792 | 03 |

6
(a) (i) values
$\begin{array}{ll}n=1 & E_{1}=-13.6(\mathrm{eV}) \\ n=2 & E_{2}=-3.40(\mathrm{eV}) \\ n=3 & E_{3}=-1.51(\mathrm{eV}) \\ n=4 & E_{4}=-0.85(\mathrm{eV}) \\ n=5 & E_{5}=-0.54(\mathrm{eV})\end{array}$
$n=5 \quad E_{5}=-0.54(\mathrm{eV})-1$ for each error
(ii) lines shown not to scale but sensibly positioned
(b) all shown
(c) (i) photon energy $=-0.54-(-3.40)=2.86 \mathrm{eV}$
(ii) photon energy $=2.86 \mathrm{eV} \times 1.6 \times 10^{-19} \mathrm{JeV}^{-1}=4.58 \times 10^{-19} \mathrm{~J}$
wavelength $=h c / E$ $=6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 4.58 \times 10^{-19}=4.34 \times 10^{-7} \mathrm{~m}$
(d) infra-red transition - any excluding falls to levels 1 or 2
(e) ultra-violet
[Total: 10]

7 (a) (i) $\sin 0.0000255=1.50 \times 10^{11} / x$

$$
\begin{equation*}
x=1.50 \times 10^{11} / \sin 0.0000255=3.37 \times 10^{17} \mathrm{~m} \quad(\text { or tan }) \tag{1}
\end{equation*}
$$

(ii) luminosity $=$ luminous flux $\times$ area $=3.6 \times 10^{-9} \times 4 \pi r^{2}$
$=3.6 \times 10^{-9} \times 4 \pi\left(3.37 \times 10^{17}\right)^{2}=5.14 \times 10^{27}$
W(att) or J s ${ }^{-1}$
(iii) luminous flux $\propto 1 / d^{2}$

$$
\begin{align*}
& 3.6 \times 10^{-9} \times\left(3.37 \times 10^{17}\right)^{2}=8.3 \times 10^{-11} \times y^{2}  \tag{1}\\
& y=\sqrt{ }(360 / 8.3) \times 3.37 \times 10^{17}=2.22 \times 10^{18} \mathrm{~m} \tag{1}
\end{align*}
$$

(b) $\lambda_{\text {max }} \propto 1 / T$
$\lambda_{\text {max }}$ for Sun $=540 \mathrm{~nm}, \lambda_{\text {max }}$ for $\mathrm{Y}=800 \mathrm{~nm}$,
$540 \times 5800=800 \times T_{y}$
$T_{y}=540 \times 5800 / 800=3900( \pm 200) \mathrm{K}$

| Page 6 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Pre-U - May/June 2012 | 9792 | 03 |

8 (a) resistivity $=($ resistance $\times$ cross section area) $/$ length
(b) $A=l^{2}$
substitution for area (1)
$R=\rho l / t l=\rho / t$
cancel $l$ from equation
(c) (i) $\begin{aligned} & 1 / R=1 / R_{\mathrm{C}}+1 / R_{\mathrm{L}} \\ & 1 / 1600=1 / 1650+1 / R_{\mathrm{L}}\end{aligned}$
recall formula - realise layers are in parallel
$R_{\mathrm{L}}=52800 \Omega$
correct substitution
answer 53000 ( $\Omega$ )
(ii) $52800=(\rho \times 0.9) /(0.4 \times 0.05)$ substitution - ignore powers of ten errors $\rho=1170(\Omega \mathrm{~m})$
correct value for $\rho$
(d) (i) $\mathrm{d} \varphi / \mathrm{dt}=(-) \varepsilon / N$
use formula
$=(-)\left(84 \times 10^{-3} \times 1\right) / 60$
$=1.4 \times 10^{-3}$
answer
units: $\mathrm{Wb} \mathrm{s}^{-1}$ or V
unit
(ii) induced emf
is directly proportional to
the rate of change in flux (linkage)
(iii) any two consistent points from:

- Lenz's law a consequence of law of conservation of energy
- magnetic field created by induced current in coil repels permanent magnetic field
- work has to be done to move the magnet through the coil because it is repelled
- this energy is converted to electrical energy dissipated in the coil's complete circuit
(e) 3 complete oscillations drawn
period kept constant
reasonably symmetrical and steady decrease in amplitude

| Page 7 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Pre-U - May/June 2012 | 9792 | 03 |

9 (a) the acceleration (or force) is directly proportional to the displacement (from the equilibrium point)
and is always directed towards that point
OR
accept formula $a=-\omega^{2} x$ with explanation of each symbol and significance of minus sign
(b) $\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\omega^{2} x$
(c)

|  | B | C | D | E | F |
| :--- | :---: | :---: | :---: | :---: | :---: |
| displacement | + | 0 | - | 0 | + |
| velocity | 0 | - | 0 | + | 0 |
| acceleration | - | 0 | + | 0 | - |

displacement line symmetrical about $D(+0-0+$ or $-0+0-$ )
displacement line correct
acceleration line opposite to displacement line.
velocity line has $B D$ \& $F$ as zero with answers to $C$ and $E$ consistent with their displacement line.
(d) (i) phase difference between displacement and velocity is $\pi / 2$ OR $3 \pi / 2$ radians OR $90^{\circ}$
(ii) displacement and acceleration are exactly out of phase OR out of phase by $\pi$ radians OR $180^{\circ}$
(e) (i) 1. amplitude $=8 \mathrm{~cm}, T=2.0 \mathrm{~s}$ so $f=0.5(\mathrm{~Hz})$
(ii) 1. $F=m A \omega^{2}$
$=0.02 \times 0.08 \times(2 \pi / 2)^{2} \quad$ convert to kg and m and substitute
$=0.0158(\mathrm{~N})$
answer $0.016(\mathrm{~N})$
2. negative cos graph of any amplitude for at least 3.5 s

| Page 8 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Pre-U - May/June 2012 | 9792 | 03 |

(f) (i) idea that $I=\Sigma r^{2} \Delta m$ or equivalent integral expression
with $r$ and $\Delta m$ defined accept clear labelling on diagram
(ii) $m g \times I \sin \theta=1 / 2 I \omega^{2}+1 / 2 m v^{2}$
$0.20 \times 9.81 \times 2.5 \sin 25=\left(1 / 20.10 \times 10^{-4} \omega^{2}\right)+\left(1 / 20.20 \times 3.72^{2}\right)$
$2.073=\left(0.05 \times 10^{-4} \omega^{2}\right)+(1.384)$
$\omega^{2}=13.78 \times 10^{4}$

- see formula quoted or used i.e. RKE $=1 / 2 I \omega^{2}$
- total energy equation quoted in symbols or used or stated in words
i.e. $m g h=1 / 2 I \omega^{2}+1 / 2 m v^{2}$ or $m g \times I \sin \theta=1 / 2 I \omega^{2}+1 / 2 m v^{2}$
- correct substitution
- answer $\omega=371\left(\mathrm{rad} \mathrm{s}^{-1}\right)$

OR
alternative method and correct answer for candidates who work out or know that $I=1 / 2 m r^{2}$

10 (a) (i) same mass
(ii) opposite charge or opposite spin
(b) (i) $\Delta E=c^{2} m$
correct substitution
$=\left(3.00 \times 10^{8}\right)^{2} \times 2 \times 9.11 \times 10^{-31}$
$=1.64 \times 10^{-13}(\mathrm{~J})$
ans: $1.6 \times 10^{-13}(\mathrm{~J})$
ans: $1.6 \times 10^{-13}(\mathrm{~J})$
(ii) $\begin{aligned} & f=(1 / 2 \Delta E) / h \\ & =\left(1 / 2 \times 1.64 \times 10^{-13}\right) / 6.63 \times 10^{-34} \quad \text { halve energy in (b)(i) }\end{aligned}$
ans: $1.2 \times 10^{20}(\mathrm{~Hz})$
[2]
(c) (i) there is a range of energies
energy per decay is constant / energy is conserved
(anti neutrino) particle has the remaining energy
(ii) $78=79+-1$ hence antineutrino must have zero proton number
(d) e.g. $400=800 \mathrm{e}^{-\mu 8} \quad$ accept either $C=C_{0} \mathrm{e}^{-\mu x}$ or $I=I_{0} \mathrm{e}^{-\mu x}$

In $2=8 \mu$
$\mu=0.0866 \mathrm{~mm}^{-1}$ OR $86.6 \mathrm{~m}^{-1}$
$C_{0}=800\left(\mathrm{~s}^{-1}\right)$
consistent values for $x$ and $C$ from graph
$\mu=0.087$ OR 87
unit: $\mathrm{m}^{-1}$
[3]
[1]

| Page 9 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Pre-U - May/June 2012 | 9792 | 03 |

(e) (i) $\lambda=h / m v$ giving expression for angular momentum, $m v r=n h / 2 \pi$
(ii) angular momentum $=\left(4 \times 6.63 \times 10^{-34}\right) / 2 \times 3.142$

$$
\begin{equation*}
=4.22 \times 10^{-34}(\mathrm{Js}) \tag{1}
\end{equation*}
$$

units must be same as those for $h$ i.e. Js
accept $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$
(iii) $E_{I}=\left\{9.11 \times 10^{-31} \times\left(1.6 \times 10^{-19}\right)^{4}\right\} /\left\{8 \times\left(8.85 \times 10^{-12} \times 6.63 \times 10^{-34}\right)^{2}\right\}$
$=21.68 \times 10^{-19}(\mathrm{~J})$
correct values for symbols used
correct substitution
answer $2.2 \times 10^{-18}(\mathrm{~J})$
there is no credit for quoting 13.6 eV from memory or for simply converting this value to joules
[Total: 20]

11 (a) the laws of physics are the same for all inertial (uniformly moving) observers
(b) the speed of light is a constant for all inertial (uniformly moving) observers
(c) (i) gamma-rays are part of the electromagnetic spectrum

OR
all EM waves travel at the speed of light
(ii) photons have momentum
momentum would not be conserved
(d) (i) the speed of light in the laboratory is independent of the speed of the source
(ii) $c\left(\right.$ or $\left.3.0 \times 10^{8} \mathrm{~ms}^{-1}\right)$ accept 'the speed of light'.
(iii) if a clock moves relative to an observer then its rate is slower than the rate of a clock at rest relative to the same observer (look for clarity of explanation and correct explanation)
note: partial answer scores one mark, e.g. time passes at different rates for differently moving observers OR moving clocks run at different rates / run slow
(iv) $\gamma=\frac{1}{\sqrt{1-0.20^{2}}}=1.021$
half-life in laboratory reference frame $=1.021 \times 18 \mathrm{~ns}=18.4 \mathrm{~ns}$
(e) (i) $\frac{t^{\prime}}{t}=1+\frac{300^{2}}{2\left(3.0 \times 10^{8}\right)^{2}}=1+5 \times 10^{-13}$ or 1.0000000000005
award 1 mark for correct substitution rounded to 1 (no more than 12 zeros after dec. pt.)
(ii) 1. $\Delta t=5 \times 10^{-13} \times 50 \times 3600 \mathrm{~s}=90 \mathrm{~ns}$
2. decreases the time
(iii) any three points from:
calculation that a drift of 5 ns per hour is 250 ns total in 50 hours (i.e. greater than expected time difference)
calculation that 100 ns gain/loss per day is about 200 ns in 50 hours (again greater than expected time difference)
such large variations in clock rates must cast doubt on the conclusion
if changes in rate can be monitored they can be corrected for and so the results might be valid
if changes in rate occur unpredictably and have this magnitude then the conclusion is invalid
allow other valid points
(f) red shift is increased/ greater (than expected from simple Doppler shift formula)
time dilation reduces the frequency of the light source relative to terrestrial source

12 (a) valid choice of experimental evidence e.g. electron diffraction experiments (Thompson or Davis and Germer) / electron diffraction rings
(b) (i) increased energy results in shorter wavelength/ higher frequency
spacing is reduced
(ii) calculate resultant amplitude by superposition
probability is proportional to amplitude squared
electrons can reach the minimum by two (or more) paths
all paths contribute to the resultant amplitude
the path differences result in phase differences
the resultant amplitude is zero
the probability of arrival is proportional to amplitude-squared so is also zero

> N.B. 3 marks can only be awarded if the answer explains why no electrons arrive at the minimum

| Page 11 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Pre-U - May/June 2012 | 9792 | 03 |

(c) (i) $t=10 \mathrm{~ms}$
approx. 10 dots distributed at random - no discernible/regular pattern
$\mathrm{t}=50 \mathrm{~ms}$
larger number of dots - pattern emerging
$\mathrm{t}=5 \mathrm{~s}$
similar shading to pattern at 2 hours
(ii) interference effects occur even with single electrons OR electrons interfere with themselves
interference effects are not caused by the interaction of different electrons
(d) (i) wavefunction collapses
more detail must be given for 2 marks:
e.g. before observation there are non-zero values spread across the screen, after observation the amplitude is zero everywhere except at the point of observation
OR before observation the wavefunction is a spreading wave, after observation it is a spike o.w.t.t.e.
(ii) any one point from:
the theory cannot explain how the wavefunction collapses
the physical description is discontinuous
quantum theory can only account for the behaviour of the unobserved wavefunction
(iii) four points from:
description of 'Many-Worlds Interpretation'

- the wavefunction represents a superposition of all possible paths/outcomes
- each alternative path/outcome exists in a different world
- the world 'splits' into many worlds each representing a different experimental outcome
avoidance of 'the Measurement problem'
- the wavefunction does not collapse so the problem goes away
- in each world an observer detects an electron at a different position on the screen

13 (a) $\Delta U=Q+W$ used correctly (at least $U$ and $W$ identified)
compression: work is done on the gas so its internal energy rises and its temperature goes up
expansion: work is done by the gas so its internal energy falls and its temperature goes down
(b) (change of state - liquid to gas) bonds broken llatent heat absorbed
work done by gas as it expands (increase in volume)

| Page 12 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Pre-U - May/June 2012 | 9792 | 03 |

(c) heat flows from hot to cold and pipes are at a lower temperature than the inside of the refrigerator
(d) a measure of the number of ways
in which the energy can be distributed amongst the particles of the body
(e) if more energy is supplied there will be
more ways in which it can be distributed amongst the particles of the body (so the entropy increases)
OR
$\Delta S=\Delta Q / T$ used appropriately with terms defined
(f) zero
(g) (i) decrease
(ii) increase
must have both (i) and (ii) correct for 1 mark
(h) that it never decreases

OR
that it tends to a maximum
(i) three points from:
electrical work $W$ from supply is ultimately dumped as heat in the environment
when heat is dumped in the environment it increases entropy
this adds to the heat $Q_{1}$ extracted from the inside of the refrigerator
total heat dumped increases entropy more than heat $Q_{2}$ absorbed reduces it
note: accept answers that refer to the entropy change of the refrigerator and environment in terms of $\Delta S_{\text {OUT }}=W+Q_{2} / T_{\text {OUT }}>\Delta S_{\text {IN }}=-Q_{1} / T_{\text {IN }}$ for 3 marks as long as terms are used correctly
(j) temperature of the room will increase
two points from:
heat dumped $>$ heat extracted
energy flows into the system
electrical energy input transferred to heat in room

