

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9792 PHYSICS

9792/02

Paper 2 (Part A Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		2	Mark Scheme: Teachers' version Pre-U – May/June 2012	Syllabus 9792	Paper 02			
 1	(a)	(i)	vect	ors have magnitude and direction but scalars have onl	y magnitude	(1)	[1]		
		(ii)	pair pair	of correct vectors of correct scalars		(1) (1)	[2]		
	(b)	(i)	vect	A Or D C					
			three resu	e vectors correctly arranged (nose-to-tail) Itant with correct arrow		(1) (1)	[2]		
		(ii)	(con (con	nponent in <i>x</i> -direction = 37 cos 25° =) 33.5 (units) nponent in <i>y</i> -direction = 37 sin 25° =) 15.6 (units)		(2) [Tota	[2] I I: 7]		
2	(a)	(i)	♀	(gravitational) pull of Earth on object					
			Ť	pull of object on Earth					
			two equa	forces on two objects al, opposite and some reference to gravitation (<u>not</u> just	<i>mg/W</i> /weight)	(1) (1)	[2]		
		(ii)	the f	forces in (i) still exist		(1)			
			two	contact/reaction/electrostatic/normal forces shown in c	liagram/mentioned	(1)	[2]		
				<u>contact</u> force of ground on object					
				v contact force of object on ground					
	(b)	(i)	curv no d	e of decreasing gradient (<u>ignore</u> short, initial straight s leceleration <u>and</u> starts from zero	ection)	(1) (1)	[2]		
		(ii)	two pull there this the f	from: of Earth on object still equal to pull of object on Earth e is force on the air (molecules) downwards/due to obj force is increasing force the air exerts on the object and the force the object	ect ect exerts on the	(1) (1) (1)			
			air re	emain equal and opposite		(1)	[2]		
						[Tota	ıl: 8]		

Page 3				Mark Scheme: Teachers' version Syllabus Pa			
				Pre-U – May/June 2012	9792	02	
3	(a)	power = d(WD) / dt or WD = $\int Pdt$ equals d($F.x$) / dt equals $F.dx$ / dt equals $F.v$ OR work done equals force × distance moved (in the direction of the force) so work done in unit time (second) = force × distance moved in unit time (second) (therefore power = force × velocity) (accept sensible symbols)			(1) (1) (1) (1)	[2]	
	(b)	(i)	1800) = F x 12.0; F = 1800 / 12.0 = 150 (N)		(1)	[1]
		(ii)	canc	lidate's (b)(i) (expected answer = 150 (N))		(1)	[1]
	(c)	(res (driv (driv	ultan /ing f /ing f	t force = mass x acceleration) orce – 150 =)850 × 2.50 or 2125 orce =)2125 + candidate's (b)(ii) calculated (expected	answer = 2275	(1) (N)) (1)	[2]
	(d)	(i)	(R ○ R _{slow} (resi	c v ²) /R _{fast} = (12.0 / 36.0) ² = 1/9 or k = 1.042 stance at high speed = 9 × 150 =)1350 (N)		(1) (1)	[2]
		(ii)	(pow	ver output = 1350 x 36 =) 48600 (W)		(1)	[1]
	(e)	P _{high} (i.e. 27 =	ratio = 3 ³ tl	w = 48600 / 1800 = 27; v_{high}/v_{low} = 36 / 12 = 3 s of powers and speeds) herefore $P \propto v^3$		(1) (1) [Total:	[2] 11]
4	(a)	(i) (ii)	(curr powe (240 (<i>E</i> = (<i>t</i> = ($ent = V/R =)240 (V) / 20 (\Omega) \text{ or } 12 (A)$ $er = V \times I \text{ or } 240 \times 12$ $\times 12 =)2880 (W)$ $(2880 \times t = m \times c \times \Delta T)$ $(33 \times 4200 \times 40) / 2880 =)1925 (s)$	V ² /R 240 ² /20	 (1) (1) (1) (1) (1) 	[3] [2]
	(b)	(i)	the (single) switch will cause three lights A, B and C to con	ne on	(1)	[1]
		(ii)	eithe eithe	er switch turns lamp D on (by completing circuit) er switch turns lamp D off (by breaking circuit)		(1) (1)	[2]
		(iii)	(curr (resi	rent =)10 (W) / 240 (V) or 1/24 (A) or <i>V</i> ² / <i>P</i> or 240 ² /10 stance = <i>V</i> / <i>I</i> = 240 × 24 =)5760 (Ω)		(1) (1)	[2]
	(c)	(i)	one secc	correct route from P to Q and correct route from P to Q		(1) (1)	[2]

Page 4			Mark Scheme: Teachers' version	Syllabus Pape		er	
				Pre-U – May/June 2012	9792	02	
		(ii)	two inde man extra large less fault	from: pendent switching/if one appliance fails the others wo y sockets can be attached to the ring a sockets can be put in with little difficulty e currents can be supplied by two cables wiring needed on one side will still leave circuit working	rk	(2) [Tota	[2] I: 14]
5	(a)	(i)	trans long (<u>acc</u>	sverse wave with <u>oscillation/vibration</u> at right angles to itudinal wave with <u>oscillation/vibration</u> in the direction <u>ept</u> answers in terms of a diagram)	o direction of trave of travel	el (1) (1)	[2]
		(ii)	pola	rised with all the oscillation in one plane/direction/angl	e	(1)	
			non- (a di	polarised with a variety of planes/directions/angles agram here must have at least <u>three</u> doubled headed	arrows)	(1)	[2]
		(iii)	thre stan oppo form that cres prog com com	e from: ding wave as two waves (of the same type and freque osite directions ing nodes and antinodes (indon not change their position (into ts and troughs of progressive waves move forwards (into pressive waves transfer energy or standing waves do not pares amplitudes (progressive constant; standing variant) pares phases (progressive varies; standing constant)	ency) travelling in can be from diago can be from diago can be from diago not transfer energ es)	(1) ram) (1) ram) (1) ram) (1) yy (1) (1) (1)	[3]
	(b)	(i)	$(n \lambda)$ $d = 2$ $\lambda = s$ $= 5.8$	= $d \sin \theta$) 1/500 mm = 2 × 10 ⁻⁶ m sin 36.09 × 2.0 × 10 ⁻⁶ / 2 391 × 10 ⁻⁷ (m)		(1) (1) (1)	[3]
		(ii)	$\lambda = s$	sin 36.13 × 10 ⁻⁶ = 5.896 × 10 ⁻⁷ (m)		(1)	[1]
		(iii)	θ in (θ=	radians or 0.04 × 2π / 360 0.04° = 0.04 × 2π / 360 (rad) =)6.98 × 10 ⁻⁴ (rad) or b	= λ/0.04	(1)	
			or b 8.4 >	= λ /candidate's value × 10 ⁻⁴ (m)		(1) (1)	[3]
						[Tota	l: 14]
6	(a)	(i)	P = 2 R =	236 cao and Q = 92 cao 143 cao		(1) (1)	[2]
		(ii)	more	e neutrons are produced than are required to cause th	e reaction	(1)	[1]

Page 5			Mark Scheme: Teachers' version	Syllabus	Paper	r	
				Pre-U – May/June 2012	9792	02	
	(b)	(i)	⁹⁰ ₃₈ Sr corre	$\rightarrow {}^{90}_{39}Y + {}^{0}_{-1}\beta^{(-)}$ (allow if candidate writes xSr and x+1Y ect yttrium numbers ect beta numbers	')	(1) (1)	[2]
		(ii)	half num num	life is 28 years so 112 years is 4 half lives ber present after this time is 1/16 of original ber present = 2.36 x 10 ¹³ / 16 = 1.475 × 10 ¹²		(1) (1) (1)	[3]
						[Tota	ıl: 8]
7	(a)	whe elec <u>phot</u> hf is Φ is $\frac{1}{2}mt$	n pho trons tons the the v ² is t	otons/em radiation/light is incident on surfaces/electror s are emitted must have sufficiently high energy/frequency energy of a photon/em radiation/light/wave work function/(minimum) energy required to liberate an the (maximum) kinetic energy of a liberated electron	ns/material/atom	 (1) (1) (1) (1) (1) (1) 	[6]
	(b)	<u>use</u> arra mea this need	of a s ngen sure gives ds to	stopping potential nent with correct polarity and (sensitive) galvanometer/ /adjust p.d. to a situation where current ceases s energy per unit charge so to get v_{max} charge per unit be used or $eV_s = \frac{1}{2}mv_{max}^2$	ammeter mass of electron	(1) (1) (1) (1)	[4]

(c) (i)	very low intensity still produces immediate emission	kinetic energy of electons does not depend on the intensity	emission is affected by frequency (e.g. there is a threshold frequency)
(ii)	classical wave requires a wait	the more energy incident on the material, the greater will be the maximum kinetic energy	frequency does not affect emission (provided the energy is the same)
(iii)	some electrons will absorb the few photons	each electron absorbs one photon (of constant energy)	energy of photon depends on frequency or <i>E</i> = <i>hf</i>

[3]

[Total: 13]

Page 6		i	Mark Scheme: Teachers' version Syllabus		Pape	r	
			Pre-U – May/June 2012	9792	02		
				Section B			
8	(a)	(i)	<u>use</u> or at 0.67	of (a =) $\Delta v/t$ or (101 to 103) / 150 tempt at gradient with sensible values 3 – 0.687 (m s ⁻²) (accept 0.68 (m s ⁻²)		(1) (1)	
		(ii)	5 × 4 1.61	8000 × candidate's (a)(i) or 48000 × candidate's (a) – 1.65 × 10 ⁵ (N))(i)	(1) (1)	
		(iii)	cano	lidate's (a)(ii) (kg m s ^{−2})		(1)	[5]
	(b)	air (as resi resi	resista the tr ultant	ance/drag/air friction/opposing force (<u>ignore</u> friction/re ain accelerates/speeds up) force remains constant or increase is cancelled by (e	esistance) increas increase) in air	ses (1) (1)	[2]
	(c)	evic or 7 198	dence 1930(300 –	of counting squares (e.g. ~500 squares)) – 20 800 (m) 20 300 (m)		(1) (1)	[2]
	(d)	(i)	136	(m s ⁻¹) cao		(1)	
		(ii)	(<i>h</i> =) use 6.40 (if fa	136 × 0.02 or 2.72 (m) of (GPE =) <i>mgh</i> e.g. 5 × 48000 × 9.81 × 2.72 × 10 ⁶ (J) (<u>allow</u> J s ⁻¹ if candidate alters answer line) ctor of five already penalised in (a)(ii) , allow 1.28 × 1	· line) 28 x 10 ⁶ (1))		
		(iii)	6.40 6.53	× 10 ⁶ / 9.80 × 10 ⁷ (%)		(1) (1)	[6]
	(e)	(i)	(a m	aterial whose) resistance/resistivity is (very close to)	o) zero		
		(ii)	no re lets a mus to co	esistive losses/heat generated (in the coil/superconduct a large current to flow/lets a large magnetic field be p to be kept at a very low temperature or helium expension fool coil or expensive to keep cold	uctor)/ produced live or energy nee	(1) eded (1)	[3]
	(f)	the ma	answ de for	ers below are in terms of the maglev system; the rev a conventional railway	erse points can b	е	
		spe bett no s doe very con mai	cial: edier ter for stopp s not y high npete ny pa	journeys business ng at smaller towns/in between link into established network speeds can cause more serious collisions with air travel more effectively ssengers per hour		 (1) (1) (1) (1) (1) (1) (1) 	

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2012	9792	02
environ	mental:		
less area	enhouse as/CO_2 emitted (not carbon emissions)		(1)
more en	ergy/fuel efficient		(1)
narrow o	uideways create a lesser impact		(1)
new line	s built to centre of cities		(1)
less nois	y or more noisy because speeds are higher		(1)
no overh	ead power lines		(1)
less wea	r and tear		(1)
less poll	ution <u>along the track</u>		(1)
econom	ic:		
steeper	gradients (shorter track length)		(1)
more exp	pensive <u>to build</u>		(1)
less exp	ensive <u>to run</u>		(1)
(bank) in	terest on construction costs		(1)
fewer tur	nnels		(1)
less mai	ntenance		(1)
cannot ri	un on conventional track		
why few	maglevs:		
cost			(1)
untested	system		(1)
conventi	onal rail got established first		(1)
maximur	n for question = 7 (with at least two advantages and a	at least two	
disadvar	ntages)		[7]
			[Total: 25]