MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9792 PHYSICS

9792/02
Paper 2 (Part A Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE,
Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9792	02

1 (a) (i) vectors have magnitude and direction but scalars have only magnitude
(ii) pair of correct vectors
pair of correct scalars
(b) (i)

three vectors correctly arranged (nose-to-tail)
resultant with correct arrow
(ii) (component in x-direction $=37 \cos 25^{\circ}=$) 33.5 (units)
(component in y-direction $=37 \sin 25^{\circ}=$) 15.6 (units)
(2) [2]
[Total: 7]

2 (a) (i)
(gravitational) pull of Earth on object
\uparrow pull of object on Earth
two forces on two objects
equal, opposite and some reference to gravitation (not just $\mathrm{mg} / \mathrm{W} /$ weight)
(ii) the forces in (i) still exist
two contact/reaction/electrostatic/normal forces shown in diagram/mentioned
$\dot{\Phi}$ contact force of ground on object
\downarrow contact force of object on ground
(b) (i) curve of decreasing gradient (ignore short, initial straight section)
no deceleration and starts from zero
(ii) two from:
pull of Earth on object still equal to pull of object on Earth
there is force on the air (molecules) downwards/due to object
this force is increasing
the force the air exerts on the object and the force the object exerts on the air remain equal and opposite

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9792	02

3 (a) power $=\mathrm{d}(\mathrm{WD}) / \mathrm{d} t$ or $\mathrm{WD}=\int P \mathrm{~d} t$
equals $\mathrm{d}(\boldsymbol{F} . \boldsymbol{x}) / \mathrm{d} t$ equals $\boldsymbol{F} . \mathrm{d} \boldsymbol{x} / \mathrm{d} t$ equals $\boldsymbol{F} . \boldsymbol{v}$
OR
work done equals force \times distance moved (in the direction of the force) so
work done in unit time (second) $=$ force x distance moved in unit time (second)
(therefore power $=$ force \times velocity) (accept sensible symbols)
(b) (i) $1800=F \times 12.0 ; \quad F=1800 / 12.0=150(\mathrm{~N})$
(ii) candidate's (b)(i) (expected answer $=150(\mathrm{~N}))$
(c) (resultant force $=$ mass \times acceleration)
(driving force $-150=$) 850×2.50 or 2125
(driving force $=) 2125+$ candidate's (b)(ii) calculated (expected answer $=2275(\mathrm{~N})$) (1)
(d) (i) $\left(R \propto v^{2}\right)$
$R_{\text {slow }} / R_{\text {fast }}=(12.0 / 36.0)^{2}=1 / 9$ or $k=1.042$
$($ resistance at high speed $=9 \times 150=) 1350(\mathrm{~N})$
[2]
(ii) (power output $=1350 \times 36=) 48600$ (W)
(e) $P_{\text {high }} / P_{\text {low }}=48600 / 1800=27 ; V_{\text {high }} / V_{\text {low }}=36 / 12=3$
(i.e. ratios of powers and speeds)
$27=3^{3}$ therefore $P \propto v^{3}$

4 (a) (i) (current $=V / R=) 240(\mathrm{~V}) / 20(\Omega)$ or $12(\mathrm{~A})$

power $=V \times I$ or 240×12 ($240 \times 12=$) $2880(\mathrm{~W})$
(ii) $\quad(E=) 2880 \times t=m \times c \times \Delta T$
$(t=(33 \times 4200 \times 40) / 2880=) 1925(\mathrm{~s})$
(b) (i) the (single) switch will cause three lights A, B and C to come on
(ii) either switch turns lamp D on (by completing circuit)
either switch turns lamp D off (by breaking circuit)
(iii) (current =) $10(\mathrm{~W}) / 240(\mathrm{~V})$ or $1 / 24(\mathrm{~A})$ or V^{2} / P or $240^{2} / 10$
(resistance $=V / I=240 \times 24=) 5760(\Omega)$
(c) (i) one correct route from P to Q second correct route from P to Q

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9792	02

(ii) two from:
independent switching/if one appliance fails the others work
many sockets can be attached to the ring
extra sockets can be put in with little difficulty
large currents can be supplied by two cables
less wiring needed
fault on one side will still leave circuit working
(2) $[2]$
[Total: 14]

5 (a) (i) transverse wave with oscillation/vibration at right angles to direction of travel longitudinal wave with oscillation/vibration in the direction of travel (accept answers in terms of a diagram)
(ii) polarised with all the oscillation in one plane/direction/angle
non-polarised with a variety of planes/directions/angles
(a diagram here must have at least three doubled headed arrows)
(iii) three from:
standing wave as two waves (of the same type and frequency) travelling in opposite directions
forming nodes and antinodes
(can be from diagram)
that do not change their position (can be from diagram)
crests and troughs of progressive waves move forwards (can be from diagram)
progressive waves transfer energy or standing waves do not transfer energy
compares amplitudes (progressive constant; standing varies)
compares phases (progressive varies; standing constant)
(b) (i) $\quad(n \lambda=d \sin \theta)$
$d=1 / 500 \mathrm{~mm}=2 \times 10^{-6} \mathrm{~m}$
$\lambda=\sin 36.09 \times 2.0 \times 10^{-6} / 2$
$=5.891 \times 10^{-7}(\mathrm{~m})$
(ii) $\lambda=\sin 36.13 \times 10^{-6}=5.896 \times 10^{-7}(\mathrm{~m})$
(iii) θ in radians or $0.04 \times 2 \pi / 360$
$\left(\theta=0.04^{\circ}=0.04 \times 2 \pi / 360(\mathrm{rad})=\right) 6.98 \times 10^{-4}(\mathrm{rad})$ or $b=\lambda / 0.04$
or $b=\lambda /$ candidate's value
$8.4 \times 10^{-4}(\mathrm{~m})$

6 (a) (i) $P=236$ cao and $Q=92$ cao
$R=143$ cao
(ii) more neutrons are produced than are required to cause the reaction

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9792	02

(b) (i) ${ }_{38}^{90} \mathrm{Sr} \rightarrow{ }_{39}^{90} \mathrm{Y}+{ }_{-1}^{0} \beta^{(-)} \quad$ (allow if candidate writes ${ }_{\mathrm{x}} \mathrm{Sr}$ and ${ }_{\mathrm{x}+1} \mathrm{Y}$)
correct yttrium numbers
correct beta numbers
(ii) half life is 28 years so 112 years is 4 half lives
number present after this time is $1 / 16$ of original
number present $=2.36 \times 10^{13} / 16=1.475 \times 10^{12}$
[Total: 8]

7 (a) when photons/em radiation/light is incident on surfaces/electrons/material/atom electrons are emitted
photons must have sufficiently high energy/frequency
$h f$ is the energy of a photon/em radiation/light/wave
Φ is the work function/(minimum) energy required to liberate an electron
$1 / 2 m v^{2}$ is the (maximum) kinetic energy of a liberated electron
(b) use of a stopping potential
arrangement with correct polarity and (sensitive) galvanometer/ammeter
measure/adjust p.d. to a situation where current ceases
this gives energy per unit charge so to get $v_{\text {max }}$ charge per unit mass of electron needs to be used or $e V_{s}=1 / 2 m v_{\text {max }}^{2}$

(c) (i)	very low intensity still produces immediate emission	kinetic energy of electons does not depend on the intensity	emission is affected by frequency (e.g. there is a threshold frequency)
(ii)	classical wave requires a wait	the more energy incident on the material, the greater will be the maximum kinetic energy	frequency does not affect emission (provided the energy is the same)
(iii)	some electrons will absorb the few photons	each electron absorbs one photon (of constant energy)	energy of photon depends on frequency or $E=h f$

[Total: 13]

Page 6 Mark Scheme: Teachers' version

Pre-U - May/June 2012
Syllabus
9792
Paper

Section B

8 (a) (i) use of ($a=$) $\Delta v / t$ or (101 to 103)/ 150 or attempt at gradient with sensible values
(ii) $5 \times 48000 \times$ candidate's (a)(i) or $48000 \times$ candidate's (a)(i) $1.61-1.65 \times 10^{5}(\mathrm{~N})$
(iii) candidate's (a)(ii) $\left(\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}\right)$
(b) air resistance/drag/air friction/opposing force (ignore friction/resistance) increases (as the train accelerates/speeds up)
resultant force remains constant or increase is cancelled by (increase) in air resistance
(c) evidence of counting squares (e.g. ~ 500 squares)

$$
\begin{equation*}
\text { or } 19300-20800(\mathrm{~m}) \tag{1}
\end{equation*}
$$

19800-20300 (m)
(d) (i) $136\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ cao
(ii) $(h=) 136 \times 0.02$ or $2.72(\mathrm{~m})$
use of (GPE =)mgh e.g. $5 \times 48000 \times 9.81 \times 2.72$
$6.40 \times 10^{6}(\mathrm{~J})$ (allow $\mathrm{J} \mathrm{s}^{-1}$ if candidate alters answer line)
(if factor of five already penalised in (a)(ii), allow $1.28 \times 10^{6}(\mathrm{~J})$)
(iii) $6.40 \times 10^{6} / 9.80 \times 10^{7}$
6.53 (\%)
(e) (i) (a material whose) resistance/resistivity is (very close to) zero
(ii) no resistive losses/heat generated (in the coil/superconductor)/ lets a large current to flow/lets a large magnetic field be produced
must be kept at a very low temperature or helium expensive or energy needed to cool coil or expensive to keep cold

```
[3]
```

(f) the answers below are in terms of the maglev system; the reverse points can be made for a conventional railway

social:

speedier journeys
better for business
no stopping at smaller towns/in between
does not link into established network
very high speeds can cause more serious collisions
compete with air travel more effectively
many passengers per hour

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9792	02

environmental:

less greenhouse gas $/ \mathrm{CO}_{2}$ emitted (not carbon emissions)
more energy/fuel efficient
narrow guideways create a lesser impact
new lines built to centre of cities
less noisy or more noisy because speeds are higher
no overhead power lines
less wear and tear
less pollution along the track

economic:

steeper gradients (shorter track length)
more expensive to build
less expensive to run
(bank) interest on construction costs
fewer tunnels
less maintenance
cannot run on conventional track
why few maglevs:
cost
untested system
conventional rail got established first
maximum for question $=7$ (with at least two advantages and at least two
disadvantages)
[Total: 25]

