CAMBRIDGE INTERNATIONAL EXAMINATIONS

Pre-U Certificate

MARK SCHEME for the May/June 2014 series

9792 PHYSICS

9792/03

Paper 3 (Part B Written), maximum raw mark 140

www. tirenepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9792	03

Section A

[11]

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9792	03

3 (a) (electric field strength is) force per unit charge positive charge[1] [2]

(b) (i) electric field strength =
$$Q/4\pi\varepsilon_0 r^2$$
 [1]
= $1.6 \times 10^{-19}/4\pi \times 8.85 \times 10^{-12} \times (2.8 \times 10^{-10})^2$ [1]
= $1.84 \times 10^{10} \text{ N C}^{-1}$ [1]

(ii) Force =
$$Ee$$
 OR working from scratch [1]
= $1.84 \times 10^{10} \times 1.6 \times 10^{-19} = 2.94 \times 10^{-9} N$ [1] [5]

(c) (i) attraction (A) from 4 nearest negative ions **and** repulsive (R) from positive ions [1]
A>R
[1]
R≈A/2

(ii) zero (N) [1]

(iii) to move it back into place [1]

(iv) an equilibrium position or opposes the charge [1] of minimum potential energy (for the whole network) [1] [7]

[14]

4

t/s	V/V	In <i>V</i>
0	12.0	2.48
10	4.25	1.45
20	1.09	0.09
30	0.51	-0.67
40	0.19	-1.66
50	0.066	-2.72

(a) all In V/V values for 2 marks deduct 1 mark for each mistake to minimum of zero [2]

(b) 2 marks for all points plotted with + or – half a small square [2] deduct 1 mark for each mistake to minimum of zero [2] [2]

(c) reading for 20 s circled [1]

Page 4			Syllabus	Paper	r	
		Pre-U – May/June 2014	9792	03		
(d)	e.g. OR use	value drops by 0.693 for a factor of 2 4.158 fall is 6 half lives ; t_6 = 40 s so half life = 6.7 ± 0.2 s of gradient (-0.104 ± 0.003) n range 6.5 to 7.7 (s)		[1] [1] [1]	[2]	
(e)	e.g. origi ther	culates number of half lives: 100 s is $100/6.7 = 15$ half lives inal charge = $CV = 2.4 \times 10^{-6} \times 12 = 2.88 \times 10^{-5}$ refore charge remaining = $2.88 \times 10^{-5} / 2^{15} = 8.8 \times 10^{-10} \text{C}$		[1] [1] [1]	[4]	
	V = Q =	s V = V _o e ^{$-\lambda \times 100$} or similar expression 12 e ^{10.3} = 4.0×10^{-4} C × V = $4.0 \times 10^{-4} \times 2.4 \times 10^{-6}$ 6 × 10^{-10} (C)		(1) (1) (1) (1)		
(f)	(i)	capacitance unit = C/V; resistance unit = V/A = Vs/C unit of CR = CVs/VC = s		[1] [1]		
	(ii)	CR = 9.6 s marked correctly at 9.6 and 48.0		[1] [1]	[4] [15]	
5 (a)	(i)	$V/T = 4.2 \times 10^{-3}/306 = 8.3 \times 10^{-3}/T$ $T = 8.3 \times 306/4.2 = 605 \text{ K}$		[1] [1]		
	(ii)	work done = $p\Delta V$ = 1.12 × 10 ⁵ × (8.3 × 10 ⁻³ – 4.2 × 10 ⁻³) = 1.12 × 10 ⁵ × 4.1 × 10 ⁻³ = 460 J		[1] [1]	[4]	
(b)		$^{2} + 400^{2} + 500^{2} + 1000^{2} = 1500000$ an square speed = 375000; rms speed = 612 m s ⁻¹		[1] [1]	[2]	
(c)	(i)	$1/2m < c^2 > = 3kT/2; 0.5 \times 4.7 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times 1.38 \times 10^{-26} \times < c^2 > = 3 \times$	0 ⁻²³ × 306/2	[1] [1]		
		at twice the temperature k.e. is twice so speed is \times 1.41 = OR via speed $\propto \sqrt{T}$	$730\mathrm{ms^{-1}}$	[1]	[3]	
(d)	•	k moves to the right a beneath both graphs approximately equal		[1] [1]	[2] [11]	

5

	ı agc o		,	Mark Scheme	Cyliabas	i apci	
				Pre-U – May/June 2014	9792	03	
6	(a)	(i)		= $\frac{1}{2}mv^2$ = $0.5 \times 6.6 \times 10^{-27} \times (3.0 \times 10^7)^2$ 0 × 10^{-12} J		[1] [1]	
		(ii)	r = (ganise equation (at some stage) to $r = Q_{\alpha}Q_{Au}/4\pi\epsilon_{0}E$ $79 \times 1.6 \times 10^{-19} \times 2 \times 1.6 \times 10^{-19}$)/ $(4 \times 3.14 \times 8.85 \times 10^{-14} \text{m}$	$0^{-12} \times 3.0 \times 10^{-12}$	[1] ²) [1] [1]	[5]
	(b)	qua lept	arks: tons; ce car	s: quarks, leptons and force carriers or bosons up, down electron, neutrino, riers: photon, gluon, ne mark for each one incorrectly placed to minimum ze	ero	[1] [3]	[4]
							[9]

Syllabus

Paper

Mark Scheme

(a) wavelength of maximum intensity inversely proportional to temperature

so $5800 \, \text{K}/T = 480 \, \text{nm}/520 \, \text{nm}$

 $T = 520 \,\mathrm{nm} \times 5800 \,\mathrm{K} / 480 \,\mathrm{nm} = 6280 \,\mathrm{K}$

Page 5

7

(b)
$$L = 4\pi\sigma r^2 T^4$$
 so $r^2 = L/4\pi\sigma T^4$ [1]
= $4.8 \times 10^{29}/4\pi \times 5.67 \times 10^{-8} \times 6280^4 = 4.33 \times 10^{20}$ [1]
 $r = \sqrt{4.33 \times 10^{20}} = 2.08 \times 10^{10} \text{ m}$ [1] [3]

[5]

[2]

[1]

[1]

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9792	03

Section B

Candidates answer three questions

			Candidates answer three questions		
8	` '		atoms/nuclei of an element contain the same number of protons and differing numbers of neutrons		
	(b)	(i)	a neutron in the nucleus decays into a proton and an electron (plus an antineutrino)	[1]	[1]
		(ii)	half life = $0.698/1.44 \times 10^{-11} = 4.8 \times 10^{10}$ year	[1]	[1]
	(c)	(i)	A_{Rb} = A_0 e (to the power $-1.44 \times 10^{-11} \times 4.0 \times 10^9$) = 0.94 valid comment that little change has occurred	[1] [1] [1]	[3]
		(ii)	positive intercept on the R axis straight line sloping gently upwards slight curve of slightly lower gradient towards the end	[1] [1] [1]	[3]
		(iii)	a larger ratio implies an older sample need to know the initial value of R need to know the initial amount/percentage of rubidium	[1] [1] [1]	[3]
		(iv)	any sensible suggestion e.g. half life too long; meteorite contamination; leakage; rick melting; non-uniformity in rock crystal	[1]	[1]
	(d)	(i)	recalls $F = mv^2/r$ for circular motion and $F = BQv$ rearrange to $r = mv/BQ$	[1] [1]	[2]
		(ii)	curve of larger radius starting from common entry point into field	[1]	[1]
		(iii)	any correct method leading to $0.68 \times 87/86 = 0.688$ $\Delta B = 7.9 \times 10^{-3}$ (T)	[1] [1] [1]	[3]
					[20]
9	(0)	(ind	luced) emf is produced across the coil	[4]	
3	(a)	•	portional to the rate of change of flux linkage	[1] [1]	[2]
	(b)	curr mag	nge in flux linkage or induced emf/p.d. in coil A or B rent induced/power in circuit for A or no induced current/power in coil B gnetic field around coil A or no magnetic field around B cosition to motion of magnet in A or no opposition to motion in B elerator is less than g/de-acceleration is g/magnet in free fall in B	[1] [1] [1] [1]	[5]

Paç	ge 7		Syllabus	Paper	•
		Pre-U – May/June 2014	9792	03	
(c)	(i)	$E/n = d\phi/dt = 2.0/400 = 5.0 \times 10^{-3} \text{ (Wb s}^{-1}\text{)}$		[1]	
((ii)	magnet is accelerating so rate of change of flux is incre hence increase (in magnitude) of E direction of emf opposes change producing it so change (answers accepted in terms of N and S pole)	_	[1] [1]	[3]
(d)		$v = \omega r = 2\pi f r$ = 2 × 3.14 × 50 × 1.9 × 10 ⁻² = 5.97 m s ⁻¹		[1] [1]	[2]
	(ii)	$E = (-)BAN\omega \sin(\omega t)$		[1]	[1]
(1	iii)	$E = BAN\omega \sin(2\pi t/T)$ = 1.7 sin(2 π × 0.0018/0.020) = 0.91 V		[1] [1] [1]	[3]
(1	•	time axis correctly labelled at $T = 20 \text{ms}$ for one cycle (1.8, 0.9 and 5.0,1.7) points that sine curve seems to go	o through	[1] [1]	[2]
((v)	vertical coil moving parallel to lines of flux so not cutting horizontal coil has zero flux linkage but maximum cutting		[1] [1]	[2]
					[20]
. ,	(fror	m Fig 10.1) $\delta\theta = v\delta t/r$ m Fig 10.2) $\delta\theta = \delta v/v$ ate to eliminate $\delta\theta$		[1] [1] [1]	[3]
(b)	(i)	$(R_1 + R_2)\cos\theta = mg$		[1]	
((ii)	$(R_1 + R_2) \sin \theta$		[1]	
(1	iii)	division of (ii) by (i)		[1]	[3]
(c)	(i)	energy cannot be created or destroyed only transferred from one form to another		[1] [1]	[2]
	(ii)	recall and use ρ = M/V substitute and arrange to ρ = $(2I)/\pi l R^4$		[1] [1]	[2]
(1	iii)	correct substitution into equation $\rho = 1800 \mathrm{kg} \mathrm{m}^{-3}$		[1] [1]	[2]
(1	iv)	number of revolutions = $6700 \times 60/2\pi = 64000$		[1]	[1]
((v)	loss in rotational k.e. = $\frac{1}{2}I(\omega_f^2 - \omega_i^2)$ = $\frac{1}{2} \times 0.176 \times (6700^2 - 2880^2)$ = $3.22 \times 10^6 \text{ (J)}$		[1] [1] [1]	[3]

	Page 8		Page 8 Mark Scheme		Syllabus	Papei	r
				Pre-U – May/June 2014	9792	03	
	((vi)	powe	$er = 3.22 \times 10^6 / 6.67 = 4.83 \times 10^5 \text{ (W)}$		[1]	[1]
	(vii)		rii) torque = $I\alpha$ = 0.176 × (6700 – 2880)/6.67 = 101 N m or equivalent unit				[3]
							[20]
11	(a)	(i)		tic energy and (electrical) potential energy cic energy positive and potential energy negative		[1] [1]	[2]
		(ii)	elect work	two from: cron is in a bound state cron with must be done to remove the electron/ionise the atom crowise the electron would have enough energy to escap		[1] [1] [1]	
						[MA	X 2]
	((iii)	(abs	olute) size of PE > (absolute) size of KE		[1]	[1]
	electr more energ intern		ctron v re det ergy le ermed	grams or written explanations any three from: waves form standing wave patterns in atom ail of standing wave patterns evel associated with standing wave pattern iate values of energy not allowed eference to equation for hydrogen levels		[3]	
		the	\mathbf{d} expl re is a en λ =		other	[3]	
	so ele		electro	on cannot fall into the nucleus		[MA	X 5]
	(c)	(i)	unce	ertainty in the (x-component) of momentum of the elect	ron	[1]	[1]
		(ii)	unce	ertainty in the (x-component) of the position of the elec	tron	[1]	[1]
	((iii)	Δx d	ecreases and Δp increases		[1]	[1]
	((iv)		petween momentum and k.e. eased uncertainty in momentum implies increased unc	ertainty in k.e.	[1] [1]	[2]
		(v)	make	ery small orbits the uncertainty in the k.e. becomes lar e the total energy positive e total energy becomes positive the electron will escap		[1] [1]	[2]
	(d)	(i)	relat	ed to the probability of finding the electron at that posi	tion in the atom	[1]	[1]

	Page 9			Mark Scheme	Syllabus	Pape	r
				Pre-U – May/June 2014	9792	03	
	the a p der		the (a pro dens	two from: (3D) electron standing wave pattern in the atom obability distribution for the position of the electron insi- sity related to probability of electron being found in that sity related to amplitude squared (intensity) of wave (fu	part of the atom	[2]	
							[20]
12 (a)	(i)		y falling pendulum will not swing, so period is infinite that it is apparently weightless		[1] [1]	[2]
		(ii)		r pendulum has longer time period ity is weaker on the Moon		[1] [1]	[2]
((b)		in re idea	ram(s) showing light path in moving clock is greater that clock that the speed of light is constant for both observers of $T = \text{distance}/c$ so longer path leads to longer period		[2] [1] [1]	[4]
((c)		any time in the there	method will not work one from dilation affects the rate at which time passes so it affe e same way will be no time difference between the two clocks is no relative motion between the two clocks	cts all clocks	[1] [1]	[2]
((d)	(i) (ii)	trans the a	real system has to work against frictional forces so ene sferred to heat amplitude of the oscillation decays with time neat increases the entropy of the universe arrow of time points from low entropy (past) to high ene		[1] [1] [1]	[2] [2]
((e)	(i)	(un-c if the to th	atom/apparatus/cat are all in one of two definite states decayed/un-triggered/alive or decayed/triggered/dea atom decays during the hour then the atom/apparatue second state at that instant in the box is opened the existing state is discovered	ad .	it [1] [1] [1]	
		(ii)	functions to the second	state of the atom/system is described by a superpositions representing the two possible states me goes on the decayed state becomes more promined ecayed state becomes less prominent in the box is opened the wave function collapses into onite states	ent and the	[1] [1] [1]	

		Pre-U – May/June 2014	9792	03		
	(iii)	functions representing the two possible states the decayed and un-decayed states exist in two parallel a different observer opens the box in each parallel world	vorlds and in one he	[1] [1]		
		discovers a live cat and in another he discovers a dead of wave function collapse	ne. There is no	[1] [MA	X 6]	
					[20]	
13	(a) (i)	basic description e.g. degree of disorder addition of extra detail e.g. a measure of the number of v distributing energy or particles among available states	rays of	[1] [1]	[2]	
	(ii)	the entropy of the universe tends to a maximum (does no	t decrease)	[1]	[1]	
	(iii)	more energy in the system increase the number of ways in which this can be distributed by the control of the co	ited	[1] [1]	[2]	
	(b) (i)	$W = Q_1 - Q_2$		[1]	[1]	
	(ii)	$(Q_1 - Q_2)/Q_1$		[1]	[1]	
	(iii)	zero		[1]	[1]	
	(iv)	if efficiency is 100% then Q_2 is zero and there is no increof the environment (heat sink) there is a decrease in entropy of the heat source as heat there is a net decrease in entropy of the universe (violation)	Q ₁ is extracted	[1] [1] [1]	[3]	
	(v)	maximum efficiency when the entropy change is zero this is when $Q_1/T_1=Q_2/T_2$ $Q_2/T_2=300/800=0.375$ maximum efficiency = 1 $-0.376=0.625$ (62.5%)		[1] [1] [1] [1]	[4]	
	(c) (i)	flow from hot to cold increases the total entropy flow from cold to hot decreases the total entropy when heat is transferred from body 1 to body 2, Q/T_2 mu Q/T_1 , otherwise the 2nd law is violated. Only possible if	•	[1]	[2]	
	(ii)	latent heat is released to the environment entropy of environment increases by a greater amount (s	o total entropy	[1] [1]	[0]	
		rises)		[1]	[3] [20]	
					,	

Mark Scheme

Syllabus

Paper

Page 10