## MAXIMUM MARK: $\mathbf{8 0}$

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
The following abbreviations may be used in a mark scheme:
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
aef Any equivalent form
art Answers rounding to
cwo Correct working only (emphasising that there must be no incorrect working in the solution)
ft Follow through from previous error is allowed
o.e. Or equivalent


\begin{tabular}{|c|c|c|c|}
\hline 4 \& (i)

(ii) \& \begin{tabular}{l}
Compare coefficients <br>
Obtain $a=2$ and $b=\frac{-5}{2}$ <br>
Obtain $c=\frac{-31}{2}$ <br>
State $\left(\frac{5}{2}, \frac{-31}{2}\right)$ <br>
Use quadratic formula in $x^{2}$ <br>
Obtain $x^{2}=\frac{9}{4}$ and $x^{2}=1$ <br>
Obtain $x= \pm \frac{3}{2}$ and $x= \pm 1$

 \& 

M1 <br>
A1 <br>
A1 <br>
A1 <br>
M1 <br>
A1 <br>
A1
\end{tabular} <br>

\hline 5 \& | (i) |
| :--- |
| (ii) |
| (iii) | \& | $\begin{aligned} & P=2 r+2 r x \\ & A=r^{2} x \\ & P=20 \text { implies } r=\frac{10}{1+x} \\ & \text { so } A=\left(\frac{10}{1+x}\right)^{2} x=\frac{100 x}{(1+x)^{2}} \quad \text { AG } \end{aligned}$ |
| :--- |
| Use quotient rule $\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{100(1+x)^{2}-200 x(1+x)}{(1+x)^{4}}=\frac{100(1-x)}{(1+x)^{3}}$ |
| Set equal to zero and find $x=1$ |
| Show with first differential test that it is maximum. o.e. | \& | B1 |
| :--- |
| B1 |
| M1 |
| A1 |
| M1 |
| A1 |
| A1 |
| M1 |
| A1 | <br>


\hline 6 \& | (i) |
| :--- |
| (ii) |
| (iii) | \& | Attempt to solve $c=1$ for at least one drug, and obtain a solution |
| :--- |
| Obtain 54.9 (hours) for Antiflu |
| Obtain 23.0 (hours) for Coldcure |
| Two decaying exponentials in the first quadrant |
| Correct intercepts on the $c$-axis |
| Crossing over at a value of $t<23$ |
| Assume additive nature of the concentrations $5 \mathrm{e}^{-0.07 \times 30}+5 \mathrm{e}^{-0.07 \times 10}=3.10$ | \& | M1 |
| :--- |
| A1 |
| A1 |
| B1 |
| B1 |
| B1 |
| M1 |
| A1 | <br>

\hline
\end{tabular}

| 7 |  | Separate variable prior to integration $\begin{aligned} & \int \frac{1}{\sec y} \mathrm{~d} y=\int \frac{1}{x^{2}} \mathrm{~d} x \\ & \sin y=-\frac{1}{x} \quad(+c) \end{aligned}$ <br> Substitute in $y=\frac{\pi}{6}$ and $x=4$ to get $c=\frac{3}{4}$ $y=\sin ^{-1}\left(\frac{3}{4}-\frac{1}{x}\right) \text { o.e. }$ | M1 <br> A1 <br> A1 <br> M1 <br> A1 <br> A1 |
| :---: | :---: | :---: | :---: |
| 8 | (i) <br> (ii) | Either $\frac{\mathrm{d} y}{\mathrm{~d} t}=2 \mathrm{e}^{2 t}-3$ or $\frac{\mathrm{d} x}{\mathrm{~d} t}=2 \mathrm{e}^{2 t}-5$ <br> $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$ used $=\frac{2 \mathrm{e}^{2 t}-3}{2 \mathrm{e}^{2 t}-5}$ <br> Substitute $t=0$ to obtain gradient $=\frac{-1}{-3}$ or equivalent <br> Obtain $x=1$ <br> Obtain $y=1$ <br> Form equation of a straight line <br> Obtain $3 y-x=2$ | B1 <br> M1 <br> A1 <br> B1 <br> B1 <br> B1 <br> M1 <br> A1 |
| 9 | (i) <br> (ii) | Find $\mathbf{a}-\mathbf{b}$ or $\mathbf{b}-\mathbf{a}$ <br> Use correct method to find the magnitude of any vector <br> $\sqrt{154}$ or equivalent <br> Attempt $\cos \theta=\frac{\overrightarrow{A O} \cdot \overrightarrow{A B}}{\|\overrightarrow{A O}\|\|\overrightarrow{A B}\|}$ <br> Obtain 70 anywhere <br> Obtain $\frac{70}{\sqrt{45} \sqrt{154}}$ <br> Obtain $32.8^{\circ}$ | M1 <br> M1 <br> A1 <br> M1 <br> B1 <br> A1 <br> A1 |

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{16}{*}{10} \& \multirow[t]{4}{*}{(i)

(ii)} \& Attempt to use product rule \& M1 <br>
\hline \& \& $y^{\prime}=a \mathrm{e}^{a x} \cos b x-b \mathrm{e}^{a x} \sin b x$ \& A1 <br>
\hline \& \& Set $y^{\prime}=0$ and rearrange \& M1 <br>
\hline \& \& $\tan b x=\frac{a}{b}$ validly obtained \& A1 <br>
\hline \& \multirow[t]{12}{*}{(ii)} \& Model 1 Correct method to solve $\tan 15 x=-\frac{1}{15} \Rightarrow x=-0.00444 \ldots .$. \& M1 <br>
\hline \& \& Obtain $y=1.0022$ \& A1 <br>
\hline \& \& Correct method to solve $x+\frac{\pi}{15}=0.20499$ \& M1 <br>
\hline \& \& Obtain $y=-0.81284$ \& A1 <br>
\hline \& \& State when $x=0.3 y=-0.156$ \& B1 <br>
\hline \& \& $\underline{\text { Model } 2 \text { Obtain } f+g=1}$ \& B1 <br>
\hline \& \& Obtain $-f+g=-0.8$ \& B1 <br>
\hline \& \& Attempt to solve their equations simultaneously \& M1ft <br>
\hline \& \& Obtain $f=0.9, g=0.1$ \& A1 <br>
\hline \& \& Obtain $\lambda=5 \pi$ \& B1 <br>
\hline \& \& State when $x=0.3, y=0.1$ \& B1 <br>
\hline \& \& Relevant comment that model 2 matches experimental data more closely. \& B1 <br>
\hline
\end{tabular}

