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1 The diagram shows the triangle ABC. AB = 10 cm, AC = 7 cm and angle BAC = 100Å.

A

B
C

100Å

10 cm 7 cm

(i) Find the length BC. [2]

(ii) Find the area of the triangle ABC. [2]

2 Let f�x� = x2 + kx + 4, where k is a constant.

(i) Find an expression for the discriminant of f in terms of k. [2]

(ii) Hence find the range of values of k for which the equation f�x� = 0 has two distinct real roots.

[3]

3 Given that f�x� = x3, use differentiation from first principles to prove that f ′�x� = 3x2. [4]

4 The points A, B, C and D have coordinates �2, −1, 0�, �3, 2, 5�, �4, 2, 3� and �−1, a, b� respectively,

where a and b are constants.

(i) Find the angle ABC. [4]

(ii) Given that the lines AB and CD are parallel, find the values of a and b. [3]

5 An arithmetic progression has first term 5 and common difference 7.

(i) Find the value of the 10th term. [1]

(ii) Find the sum of the first 15 terms. [2]

The terms of the progression are given by x1, x2, x3, … .

(iii) Evaluate
15

Ð
n=1

�2xn + 1�. [3]

6 Given that the angle 1 is acute and cos1 = 3
4

find, without using a calculator, the exact value of sin 21

and of cot 1. [5]

7 (i) Express Ï4 + 3Ï2 − 4 in the form �Ï2 + a��Ï2 + b� where a and b are real constants to be found.

[2]

(ii) Hence draw an Argand diagram showing the points that represent the roots of the equation

Ï4 + 3Ï2 − 4 = 0. [2]
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8 Show that the graph of y = x2 − ln x has only one stationary point and give the coordinates of that

point in exact form. [6]

9 A new lake is stocked with fish. Let Pt be the population of fish in the lake after t years. Two models

using recurrence relations are proposed for Pt, with P
0
= 550.

Model 1 : Pt = 2Pt−1
e−0.001P

t−1

Model 2 : Pt =
1
2
Pt−1

�
7 − 1

160
Pt−1

�

(i) Evaluate the population predicted by each model when t = 3. [4]

(ii) Identify, with evidence, which one of the models predicts a stable population in the long term.

[2]

(iii) Describe the long term behaviour of the population for the other model. [1]

10 Let f�x� = x4 − 4x3 − 10x2 + 28x − 15.

(i) Show that x = 1 is a root of the equation f�x� = 0. [2]

(ii) Find the quotient and remainder when f�x� is divided by x − 5. [4]

(iii) Factorise f�x� fully and hence sketch the graph of y = f�x�. [5]

11 The cubic equation x3 − 2x2 + 4x − 7 = 0 has a single root !, close to 1.9, which can be found using an

iteration of the form xn+1
= F�xn�. Three possible functions that can be used for such an iteration are

F
1
�x� = 7

4
+ 1

2
x2 − 1

4
x3, F

2
�x� = 3

�
2x2 − 4x + 7, F

3
�x� = 7 − 4x

x2 − 2x
.

(i) Differentiate each of these functions with respect to x. [5]

(ii) Without performing any iterations, and using x = 1.9, show that an iterative process based on

only two of the given functions will converge.

Determine which one will do so more rapidly. [4]

The sequence of errors, en, is such that en+1
≈ F ′�!�en.

(iii) Using the iteration from part (ii) with the most rapid convergence, estimate the number of

iterations required to reduce the magnitude of the error from �e
1
� in the first term to less than

10−10�e1�. [3]

12 A curve C is defined parametrically by

x = cos t�1 − 2 sin t�, y = sin t�1 − 3 sin t�, 0 ≤ t < 20.

(i) Show that C intersects the y-axis at exactly three points, and state the values of t and y at these

points. [5]

(ii) Find the range of values of t for which C lies above the x-axis. [4]
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