CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2014 series

9794 MATHEMATICS

9794/03

Paper 3 (Applications of Mathematics), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme	Syllabus	Paper			
		Pre-U – May/June 2	9794	03			
					1		
1	Mid-points 1.7, 1.9, 2.1, 2.3, 2.5 $\bar{x} = \frac{206.2}{100} = 2.062 (\text{kg})$		M1		With no working shown allow only correct answers (to 3 sf or better). Use of mid-points seen or implied.		
			A1		c.a.o.		
	$s = \sqrt{\frac{431}{10}}$ $\therefore s = \sqrt{0}.$	$\frac{.16}{00} - 2.062^2$ $\overline{059756} = 0.244(45) (kg)$	M1 B1 A1	[5]	Use of correct formula for standard deviation; may be implied. Correct Σfx^2 s.o.i. c.a.o. Allow unbiased estimator (0.24568) for full marks. 2.06 used for sd (gives 0.2607 or unbiased 0.2620) gets max M1 B1 A0.		
2 (i)	$P(A \cap B)$	$= P(A) + P(B) - P(A \cup B)$ = 0.6 + 0.5 - 0.8 = 0.3	M1 A1	[2]	Probability rule applied, s.o.i. c.a.o. Accept solutions based on Venn diagrams.		
(ii)	P(B A) =	$\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)}$	M1		Conditional probability rule applied, s.o.i.		
	=	$\frac{0.3}{0.6} = 0.5$	A1	[2]	ft (i) provided both $P(A \cap B)$ and $P(B)$ lie between 0 and 1.		
(iii)	A and B a 0.5	re independent since $P(B A) = P(B) =$	B1	[1]	ft (ii). Must be supported by explicit numerical evidence. Accept alternatives, e.g. $P(A \cap B) = P(A) \times P(B)$, with evidence.		
3 (i)	p = 1 - (0	.4 + 0.3 + 0.1) = 0.2	B1	[1]			
(ii)	$(1 \times 0.4) - \therefore 0.2n + \therefore 0.2n =$	+ (2×0.3) + $(n \times 0.2)$ + (7×0.1) = 2.5 1.7 = 2.5 0.8	M1		Use of formula for $E(X)$ s.o.i. to set up an equation in n .		
	$\therefore n = 4$		A1	[2]	c.a.o.		
(iii)	$E(X^2) = (1)$ $(7^2 \times 0.1)$	$(2^{2} \times 0.4) + (2^{2} \times 0.3) + (4^{2} \times 0.2) +$ = 9.7	B1		Correct ft c's <i>n</i>	t expression for E	(X^2) s.o.i.
	Var(X) =	$9.7 - 2.5^2 = 3.45$	M1 A1	[3]	Use of formula for Var(<i>X</i>) s.o.i. c.a.o.		
4 (i)	$\mathrm{E}(X)=20$	$1 \times 0.4 = 8$	B1	[1]			
(ii)	State or in $P(X=8)=$	nply Bin(20, 0.4) = 0.5956 – 0.4159	B1 M1		May be Use of or form	e awarded elsewho tables for $P(X \le 8)$ nula for $P(X = 8)$.	ere if not here. B) $- P(X \le 7)$
	=	= 0.1797	A1	[3]	c.a.o		
(iii)	$P(X \ge 8) =$	= 1 - 0.4159 = 0.5841	M1 A1	[2]	Attemp c.a.o	$pt \ 1 - P(X \le 7)$	

Page 3		Mark Scheme				Syllabus	Paper		
		Pre-U – May/June 2014				9794	03		
5 (i)	Recognise	e combination problem.	M1						
	$^{15}C_4 = \frac{15!}{11!4!} = 1365$			[2]	c.a.o.				
(ii)	Recognise implication of "no restrictions". $15^4 = 50625$			[2]	c.a.o.	c.a.o.			
(iii)	$\frac{15 \times 14 \times 13 \times 12}{15^4} = \frac{32760}{50625} = \frac{728}{1125} = 0.647(11)$			[3]	Correct numerator. Correct denominator; ft (ii). c.a.o.				
6 (i)	$D \sim N(8)$	$3, 0, 20^2$							
0 (1)	$P(8.1 < D < 8.3) = P\left(\frac{8.1 - 8.3}{0.20} < Z < \frac{8.5 - 8.3}{0.20}\right)$				Standardising, either term.				
	$= \Phi(1.0) = 0.8413$	- Φ(-1.0) - (1 - 0.8413)	M1 B1 M1		Relevant difference of 2 terms s.o.i. Correct table look-up: 0.8413 seen.				
	= 0.6826		A1	[5]	$1 - \dots$ to deal with negative 2 value.				
(ii)	Now $D \sim$	N(μ, σ^2)							
	P(D < 8.5	$() = 0.88 \Rightarrow \frac{8.5 - \mu}{\sigma} = 1.175$	M1		Set up at least 1 equation for μ and σ .				
	P(<i>D</i> < 8.1	$() = 0.10 \Rightarrow \frac{8.1 - \mu}{\sigma} = 1.282$	B1 A1		1.175 and/or (–)1.282 seen. Both equations correct.				
	$\therefore \mu + 1$ $\therefore 2.457$ $\therefore \sigma = 0.$ $\therefore \mu = 8.2$ or $\mu = 8.2$	$.175\sigma = 8.5$ and $\mu - 1.282\sigma = 8.1$ $\sigma = 0.4$ 1628(0) $5 - 1.175 \times 0.1628 = 8.3087$ $1 + 1.282 \times 0.1628$	M1 A1 A1	[6]	Attempt to eliminate either μ or σ . One of σ or μ found. c.a.o. The other found. c.a.o. Allow 0.163 used and a.w.r.t. 8.31				
7	At max he	eight	MI		II	·	/2		
	$0 = 30^{-} -$	$2 \times 10 \times h$			Use of Correc	an appropriate si	<i>ivat</i> equation.		
	$\therefore h = 45$	m	A1		Correc	t outcome. g = 9.8, giving $h =$	= 45.918		
	On return	to ground level							
	-30 = 30	$-10 \times t$	M1		Correc	t use of a second a equation. Allow	appropriate any valid		
	$\therefore t = 6 \text{ set}$	жс 	A1	[5]	method, e.g. (time to max ht) \times 2. Correct outcome. Allow $g = 9.8$, giving $t = 6.122$				

Page 4		Mark Scheme	Syllabus	Paper						
		Pre-U – May/June 2014				9794	03			
	1				1					
8 (i)	$\mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 + \mathbf{F}_4 = 0$ $\therefore (5\mathbf{i} - 8\mathbf{j}) + (-3\mathbf{i} - 4\mathbf{j}) + (6\mathbf{i} + 6\mathbf{j}) + \mathbf{F}_4 = 0$ $\therefore \mathbf{F}_4 = (-8\mathbf{i} + 6\mathbf{j})$		M1		Sum of 4 forces set equal to 0 o.e.					
			A1	[2]	c.a.o.					
(ii)	$ \mathbf{F} = \sqrt{(2)^2 + 6^2}$		M1		Use of	Pythagoras				
	$ \mathbf{r}_4 = \sqrt{(1-1)^2}$	N	A1		ft (i).	ft (i).				
	$\theta = inv$ ta	$n\left(\frac{6}{-8}\right)$	M1		Correc	et use of inverse ta	n (or cos or			
	$= 143(.13)^{\circ}$			[4]	sin). ft (i) , t	out not c's magnit	ude. Must have			
		·			a clear reference direction. Allow sketch as evidence if convincing.					
9 (i)	Diagram and friction	showing weight, normal contact force on, and no others	B1	[1]						
(ii)	Resolve p	perpendicular to slope:								
	N = n N2L used	<i>ng</i> cos θ & resolve down slope:	B1 M1		Equation of motion with 3 terms and					
	ma =	$= mg\sin\theta - F$			at least 2 correct. Condone consistent sin/cos error.					
	Friction la	aw:								
	$F = \mu N$ $\therefore ma = ma \sin \theta - \mu ma \cos \theta$				Limitii	Attempt to eliminate N and F, and				
			. 1	5.63	cancel <i>m</i> .					
	$\therefore a = g($	$\sin \theta - \mu \cos \theta$	AI	[5]	c.a.o.					
(iii)	If $\mu > \tan$	θ then the particle will not move.	B1	[1]						
10 (i)	$v = \int (12 \cdot$	-6t)dt	M1		Set up	integral for v.				
	= 12t -	$3t^{2}(+c)$	A1		Correct	et integration. Con	done omission			
	v = 0 whe	$m t = 0 \therefore c = 0$	M1	F 43	<i>"c"</i> dea	alt with explicitly.	, ,			
	When $t =$	4, $v = 48 - 48 = 0 \mathrm{ms}^{-1}$	AI	[4]	c.a.o. 1 Accept definit	t correct answer of e integral.	grated <i>a</i> . btained from a			
(ii)	$x = \int_0^4 (12)$	$(t-3t^2)dt$	M1		Correc limits (with la	et integral of c's v, (which may appea ater).	including Ir or be dealt			
	$=(6t^2 -$	$(-t^3)\Big _0^4$	A1		Correc	et integration. ft c'	s <i>v</i> .			
	= (96 -	$64) - (0) = 32 \mathrm{m}$	A1	[3]	c.a.o. following use of limits or explicit treatment of " <i>c</i> ".					
(iii)	When <i>x</i> =	$0, 6t^2 - t^3 = 0$	M1		Equation for x in integrated considered	on for $x = 0$. ft c's n (ii) only if obtain attion. Condone om eration of "c" (=0)	expression red by rission of).			
	$\begin{array}{c} t \neq 0 \therefore t \neq \\ \therefore v = 72 \end{array}$	= 6 sec - 108 = - 36 ms ⁻¹	A1 A1	[3]	Solved	l and non-zero sol	ution chosen.			
1	, 12	100 20 110	• • •	۲~ J						

Page 5		Mark Scheme	Syllabus	Paper				
	Pre-U – May/June 2014				9794	03		
			-		1			
11 (i)	(i) N2L & Resolve vertically for either particle $0.3a = 0.3g - T$		M1 A1		Accept	roughout.		
	0.2 <i>a</i>	= T - 0.2g	A1					
	0.5 <i>a</i>	= 0.1g = 1	M1		Eliminate either <i>T</i> or <i>a</i> .			
	$\therefore a = 2 \text{ n}$	ns^{-2}	A1		Correc	Correct value for one. c.a.o.		
	$\therefore T = 0.3$	$6 \times 10 - 0.3 \times 2 = 2.4$ N	A1	[6]	Correct value for the other. c.a.o.			
	ALTERN N2L for v	ATIVE: whole system	M1		Allow	1 error.		
	(0.3 + 0.2)a = 0.3a - 0.2a		A1		All con			
	(0.5 + 0.2)u = 0.5g = 0.2g $\therefore a = 2 \text{ ms}^{-2}$		A1		c.a.o.			
	N2L & R	esolve vertically for either particle	M1					
	$0.3a = 0.3\sigma - T \text{ or } 0.2a = T - 0.2\sigma$		A1		All con			
	$\therefore T = 2.4$	N	A1		c.a.o.			
(ii)	$v^2 = 0^2 + 2$	$2 \times 2 \times 2.25 = 9$	M1		Use of appropriate 'suvat' equation.			
	$\therefore v = 3 \text{ m}$	ns^{-1}	A1	[2]	ft c's <i>a</i> .			
(iii)	$I = (0.3 \times$	(3) - (0)	M1		Use of Impulse = change in		e in	
					momen	ntum.		
	= 0.9 Ns	5	A1	[2]	ft c's v, including units. Allow –0.9			
					and/or	kgms ⁻¹ .		
(iv)		0.005	M1		II	Turnalaa Ca		
(1V)	$0.9 = P \times$	0.005		[2]	Use of impulse = force \times time, o.e.			
	$\therefore P = 180$	U N	AI	[∠]	nc's I	. Allow –180.		