MARK SCHEME for the May/June 2014 series

9794 MATHEMATICS

9794/02
Paper 2 (Pure Mathematics 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9794	02

$1 \quad \text { (i) }$ (ii)	$\begin{aligned} & \begin{array}{l} B C^{2}=10^{2}+7^{2}-2 \times 10 \times 7 \times \cos (100) \\ B C= \\ \text { Area } \end{array}=0.13 .164 \ldots=13.2 \text { to } 3 \mathrm{sf} \\ & \\ & \\ & =34.468 \ldots 7 \times \sin (100) \end{aligned}$	M1 A1 [2] M1 A1 [2]	Must be correct formula attempted Must be correct formula attempted Allow equiv methods as long as valid use of trig throughout
$2 \text { (i) }$ (ii)	$\begin{aligned} & \begin{array}{l} \Delta=b^{2}-4 a c \\ =k^{2}-16 \end{array} \\ & k^{2}-16.0 \\ & \\ & k .4 \\ & k,-4 \end{aligned}$	M1 A1 [2] M1 A1 A1 $[3]$	Simplify to this Must be > seen, or implied by answer Allow incorrect answer from (i), as long as $b^{2}-4 a c$ attempted A1A0 for $-4>k>4$ or $k> \pm 4$ Allow BOD on 'and' not 'or' $\|k\|>4$ gets A 1 A 1 Attempting to solve $\mathrm{f}^{\prime}(x)>0$ can get M1A1A1 as above
3	$(x+h)^{3}=x^{3}+3 x^{2} h+3 x h^{2}+h^{3}$ seen anywhere If $\mathrm{f}(x)=x^{3}, \mathrm{f}(x+h)=(x+h)^{3}$ $\begin{align*} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{h} & =\frac{(x+h)^{3}-x^{3}}{h} \\ & =3 x^{2}+3 x h+h^{2} \tag{4} \end{align*}$ then $\mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right)=3 x^{2}$	B1 M1 M1 A1	Or unsimplified equiv Could expand $(x-h)^{3}$ instead Just recognise that $\mathrm{f}(x+h)=(x+h)^{3}$, or $\mathrm{f}(x-h)=(x-h)^{3}$ Attempt correct process, including division by h Allow $h=0$ for $h \rightarrow 0$ Allow $\mathrm{f}^{\prime}(x) \rightarrow 3 x^{2}$ Need to see $\mathrm{f}^{\prime}(x)$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ within proof

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	$\mathbf{9 7 9 4}$	$\mathbf{0 2}$

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9794	$\mathbf{0 2}$

6	$\sin \theta=\frac{\sqrt{7}}{4}$ $\sin 2 \theta=2 \sin \theta \cos \theta$ $\begin{aligned} & =2 \times \frac{\sqrt{7}}{4} \times \frac{3}{4}=\frac{3 \sqrt{7}}{8} \\ \cot \theta & =\frac{\cos \theta}{\sin \theta}=\frac{3 / 4}{\sqrt{7} / 4}=\frac{3}{\sqrt{7}} \end{aligned}$		Attempt to find numerical value of $\sin \theta$ - from right angled triangle or identities Must be correct triangle/identity Use $\sin 2 \theta=2 \sin \theta \cos \theta$ with numerical values M0 if using numerical value for θ not $\sin \theta$ M0M1 is possible (e.g. assuming 3, 4, 5Δ) Obtain correct surd aef (must be single fraction) Attempt to find $\cot \theta$, using numerical values M0 if using numerical value for θ not $\tan \theta$ Could follow first M0 Obtain correct surd aef (must be single fraction)
$7 \text { (i) }$ (ii)	$\left(z^{2}+4\right)\left(z^{2}-1\right)$		Stating $a=4, b=-1$ (or reverse) gets B2 Allow B1 for $\left(z^{2}-4\right)\left(z^{2}+1\right)$ Allow B1 (BOD) for $(z+4)(z-1)$ At least 2 correct points, following their $a \& b$ All 4 correct points, following their a $\& b$ as long as one positive and one negative NIS so B1B0 if locus drawn through points Allow just 2 on axis as long as $2 i$ seen in solution, or axis is labelled as Im

Page 5 Mark Scheme	Syllabus	Paper	
	Pre-U - May/June 2014	$\mathbf{9 7 9 4}$	$\mathbf{0 2}$

\begin{tabular}{|c|c|c|c|c|}
\hline 8 \& \begin{tabular}{l}
\[
\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-\frac{1}{x}
\] \\
solve to obtain \(x=(\pm) \frac{1}{\sqrt{2}}\) only one stationary point at \(\left(\frac{1}{\sqrt{2}}, \frac{1}{2}-\ln \frac{1}{\sqrt{2}}\right)\) AEF \\
as \(x, 0\) cannot be valid due to \(\ln\)
\end{tabular} \& M1
A1
M1
A1
A1

A1 \& \& | Attempt integration - one correct term Fully correct |
| :--- |
| Equate to 0 and attempt to solve Obtain at least the positive root Obtain correct stationary point having selected the positive root only from $\pm \frac{1}{\sqrt{2}}$ Allow $x=\ldots, y=\ldots$ |
| Exact final answer only, else A0 Explanation of why there is only one root, referring to $\ln x$ |
| Only considering +ve solution will get $\max 4 / 6$ |

\hline $9 \quad$ (i) \& | Model 1: Attempt iteration $P_{3}=687$ |
| :--- |
| Model 2 : Attempt iteration $P_{3}=927$ | \& M1

A1
M1

A1 \& [4] \& | At least twice |
| :--- |
| Allow decimal values, or 686 |
| At least twice |
| Allow decimal values, or 926 |

\hline (ii) \& | Model 1 |
| :--- |
| converges to 693 | \& B1

B1 \& [2] \& | Identify Model 1, with minimal explanation e.g. decreasing rate of increase |
| :--- |
| Identify that it converges to 693 oe (could justify that $P_{t} \approx P_{t-1}$) |

\hline (iii) \& appears to settle down to periodic (values 926, 561, 980 and 429) \& \& [1] \& State as periodic oe - need to see 4 values, or refer to period of 4 years

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9794	02

Page 7	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9794	02

Page 8	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9794	02

12 (i)	$\begin{aligned} & \cos t=0 \text { or } \sin t=\frac{1}{2} \\ & \begin{aligned} & \cos t=0 \Rightarrow t=\frac{1}{2} \pi, \frac{3}{2} \pi \\ & y=-2 \text { and }-4 \text { respectively } \\ & \sin t=\frac{1}{2} \Rightarrow t=\frac{1}{6} \pi, \frac{5}{6} \pi \\ & y=-\frac{1}{4} \text { for both values of } t \text { so } \end{aligned} \end{aligned}$ there is only one point on the y-axis associated with both.	M1 A1 A1 A1 A1	[5]	Attempt to solve at least one of these Obtain both values for t Obtain both values for y SR A1 for one correct t, y pair Obtain both values for t Obtain $y=\frac{-1}{4}$ for both, and comment that same point - allow just listing ($0, \frac{-1}{4}$) once SR A1 for one correct t, y pair max of $4 / 5$ if working in degrees
(ii)	$\sin t<0$ AND $\sin t>\frac{1}{3}$, but this is not possible Identify that $\sin t>0$ AND $\sin t<\frac{1}{3}$	B1 M1		If equating to 0 and solving then both inequalities must be used/implied later to get M1 Allow \geq for $>$
	$\text { so } t \in\left(0, \sin ^{-1} \frac{1}{3}\right) \cup\left(\pi-\sin ^{-1} \frac{1}{3}, \pi\right) \text { oe }$	A1 A1		Obtain at least $0<t<\sin ^{-1}\left(\frac{1}{3}\right)$ Allow $0<t<0.34$ Allow \geq for $>$ Allow $0<t<0.34,2.80<t<3.14$ working in degrees can get M1A1 only

