MARK SCHEME for the May/June 2014 series

9794 MATHEMATICS

9794/01
Paper 1 (Pure Mathematics 1), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9794	01

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9794	01

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9794	01

Page 5 Mark Scheme	Syllabus	Paper	
	Pre-U - May/June 2014	9794	01

10 (a) Attempt integration to obtain an integral in $\ln (\mathrm{f}(x))$
Substitute limits to obtain correctly $\frac{1}{2}(\ln 9-\ln 5)$
Show clearly the use of at least one log law
Obtain $\ln \frac{3}{\sqrt{5}}$ www AG
(b) Attempt integration by parts with $u=x \mathrm{~d} u=1$ and $\mathrm{d} v=(x-2)^{0.5}$ and $v=\frac{2}{3}(x-2)^{\frac{3}{2}}$

Obtain $k x(x-2)^{\frac{3}{2}}-m \int \mathrm{f}(x) \mathrm{d} x$
Obtain $k \mathrm{~g}(x)-m \int \mathrm{f}(x-2)^{\frac{3}{2}} \mathrm{~d} x$
Obtain $\frac{2}{3} x(x-2)^{\frac{3}{2}}-\frac{4}{15}(x-2)^{\frac{5}{2}}+c$
OR
Attempt reverse substitution with $u=x-2 \mathrm{~d} u=\mathrm{d} x$ and
$\sqrt{x-2}=\sqrt{u}$
Obtain $\int(u \pm 2) u^{0.5} \mathrm{~d} u$
Obtain $k u^{\frac{5}{2}}+m u^{\frac{3}{2}}$
Obtain $\frac{2}{5}(x-2)^{\frac{5}{2}}+\frac{4}{3}(x-2)^{\frac{3}{2}}+c$

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9794	01

Page 7	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9794	01

12 (i) Attempt to use $\tan 4 x=\tan 2(2 x)$
Obtain $\tan 4 x=\frac{2 \tan 2 x}{1-\tan ^{2}(2 x)}$ or $\frac{\tan 2 x+\tan 2 x}{1-\tan ^{2}(2 x)}$
Attempt to substitute for $\tan 2 x$
Obtain $\frac{\frac{2(2 \tan x)}{1-\tan ^{2} x}}{1-\left(\frac{2 \tan x}{1-\tan ^{2} x}\right)^{2}}$

Correctly form a single term in the denominator by removing the 1
Obtain $\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x} A G$.
Stages in the argument must be consistent and clearly presented for A1.
(ii) State or imply that the root gives $\tan 4 x=1$

Attempt to write the equation in the same structure as the identity
$\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}$
Obtain $p=4$
Convincing and clear argument with all stages shown including the statement that $\tan \left(\frac{\pi}{4}\right)=1$

B1 dep
Evaluation using decimals $0 / 4$

