**CAMBRIDGE INTERNATIONAL EXAMINATIONS** 

**Pre-U Certificate** 

## nun. trenepabers.com

## MARK SCHEME for the May/June 2013 series

## 9794 MATHEMATICS

9794/03

Paper 3 (Applications of Mathematics), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme           | Syllabus | Paper |
|--------|-----------------------|----------|-------|
|        | Pre-U – May/June 2013 | 9794     | 03    |

Where appropriate, accept answers to 3 sf or better, then, except in **Q4 (iii)**, ISW if rounded to 2sf or fewer. Answers given to 2 sf or fewer without an "unrounded" answer score A0.

| 1 |      | $\overline{x} = \frac{192}{100} = 1.92$                                                               | M1<br>A1     |     | Use of correct formula for mean; may be implied. c.a.o.                                                                                                                           |
|---|------|-------------------------------------------------------------------------------------------------------|--------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |      | $s = \sqrt{\frac{488}{100} - 1.92^2} = \sqrt{1.1936} = 1.09(25)$                                      | M1<br>A1 [4] | [4] | Use of correct formula for standard deviation; may be implied. c.a.o. Accept unbiased estimate 1.09(80) If no working shown, answer must be correct to 3 sf (or better) to score. |
| 2 | (i)  | $P(A \cap B) = P(A) \times P(B \mid A)$ $= \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$              | M1<br>A1 [2] |     | Conditional probability rule applied, s.o.i. c.a.o. Accept solutions based on Venn diagrams.                                                                                      |
|   | (ii) | $P(B) = P(A \cup B) - P(A) + P(A \cap B)$ $= \frac{5}{6} - \frac{1}{2} + \frac{1}{8} = \frac{11}{24}$ | M1           |     | Probability rule applied, s.o.i.                                                                                                                                                  |
|   |      | 6 2 8 24                                                                                              | A1 [2]       | [4] | Ft (i) provided both $P(A \cap B)$ and $P(B)$ lie between 0 and 1.                                                                                                                |
| 3 | (i)  | $S_{xy} = 77532 - \frac{1002 \times 1865}{25} = 2782.8$                                               | M1           |     | Use of formula for numerator.                                                                                                                                                     |
|   |      | $S_{xx} = 43508 - \frac{1002^2}{25} = 3347.84$                                                        | M1           |     | Use of formula for either term in denominator.                                                                                                                                    |
|   |      | $S_{yy} = 142749 - \frac{1865^2}{25} = 3620$                                                          |              |     |                                                                                                                                                                                   |
|   |      | $r = \frac{2782.8}{\sqrt{3347.84 \times 3620}} = 0.799(36)$                                           | M1<br>A1 [4] |     | Use of formula for $r$ . c.a.o.                                                                                                                                                   |
|   | (ii) | Form $y = ax + b$                                                                                     |              |     |                                                                                                                                                                                   |
|   |      | $a = \frac{S_{xy}}{S_{xx}} = \frac{2782.8}{3347.84} = 0.83(122)$                                      | M1           |     | Use of formula for <i>a</i> .                                                                                                                                                     |
|   |      | S <sub>xx</sub> 3347.64                                                                               | A1           |     | $S_{xy}$ and $S_{xx}$ from above. <b>AG.</b>                                                                                                                                      |
|   |      | $b = \overline{y} - a\overline{x}$                                                                    |              |     |                                                                                                                                                                                   |
|   |      | $\therefore b = \frac{1865}{25} - 0.83122 \times \frac{1002}{25}$                                     | M1           |     | Use of formula for b.                                                                                                                                                             |
|   |      | $= 74.6 - 0.83122 \times 40.08 = 41.28(46)$                                                           | A1 [4]       |     | <b>AG.</b> Must be convincing.                                                                                                                                                    |
|   |      |                                                                                                       |              |     | Allow M1 for use of $a = 0.83$ to find $b = 41.33$ , or $b = 41.28$ to find $a = 0.83133$ , but not both, but do not award the corresponding A mark.                              |

| Page 3 | Mark Scheme           | Syllabus | Paper |
|--------|-----------------------|----------|-------|
|        | Pre-U – May/June 2013 | 9794     | 03    |

| (iii) | When $x = 50$ , $y = 82.78 \approx 82.8$            | B1       |     |      | Accept a.w.r.t. 82.8                                                                                                  |
|-------|-----------------------------------------------------|----------|-----|------|-----------------------------------------------------------------------------------------------------------------------|
|       | This is ok; it is within the range of the data.     | B1       |     |      | At least one of the comments must refer to within/beyond the range of the data. (o.e.)                                |
|       | When $x = 65$ , $y = 95.23 \approx 95.2$            | В1       |     |      | Accept a.w.r.t. 95.2                                                                                                  |
|       | This is not ok; it is beyond the range of the data. | B1       | [4] | [12] |                                                                                                                       |
| 4 (i) | $X \sim N(85.1, 3.4^2)$                             |          |     |      |                                                                                                                       |
|       | $P\bigg(Z < \frac{80 - 85.1}{3.4}\bigg)$            | M1       |     |      | Standardising.                                                                                                        |
|       | $= \Phi(-1.5) = 1 - \Phi(1.5) = 1 - 0.9332$         | M1       |     |      | $1 - \dots$ to deal with negative z value.                                                                            |
|       | = 0.0668                                            | A1       | [3] |      |                                                                                                                       |
| (ii)  | P(B(6, 0.0668) <1)                                  | M1       |     |      | Recognise need for $B(6, p)$ . Possibly implied by partially correct terms in the next line.                          |
|       | $= 0.9332^6 + 6 \times 0.9332^5 \times 0.0668$      | M1<br>M1 |     |      | Either term correct. Sum of two correct terms.                                                                        |
|       | = 0.66046 + 0.28366                                 |          |     |      |                                                                                                                       |
|       | = 0.944(12)                                         | A1       | [4] |      | Ft their p from (i).                                                                                                  |
| (iii) | $250 \times (1 - 0.9441)$                           | M1       |     |      | 250 ×                                                                                                                 |
|       |                                                     | M1       |     |      | (1-(ii)).                                                                                                             |
|       | =13.975 ≈ 14.0                                      | A1       | [3] | [10] | Must be at least 1 dp. Do not allow answer rounded to the nearest integer, even following an answer to 3sf or better. |

| Page 4 | Mark Scheme           | Syllabus | Paper |
|--------|-----------------------|----------|-------|
|        | Pre-U – May/June 2013 | 9794     | 03    |

|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |      | 1                                            |
|---|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|------|----------------------------------------------|
| 5 | (i)  | 7! 5040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1         |       |      | 7!                                           |
|   | , ,  | $\frac{7!}{2!} = \frac{5040}{2} = 2520$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1         |       |      | ÷ 2!                                         |
|   |      | 2. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1         | [3]   |      | c.a.o.                                       |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | r- 1  |      |                                              |
|   | (ii) | $^{6}C_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1         |       |      | Consider selections when all digits are      |
|   | (11) | $C_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,11       |       |      | different.                                   |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |      | different.                                   |
|   |      | ${}^{6}C_{5} \times {}^{5}P_{5}$ or ${}^{6}P_{5} = 720$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1         |       |      | Arrangements when all digits different.      |
|   |      | $C_5 \times P_5 \text{ or } P_5 - 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 1 1      |       |      | Arrangements when an aight airrefent.        |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.61       |       |      |                                              |
|   |      | $^{5}C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1         |       |      | Consider selections of the form 11xxx.       |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |      |                                              |
|   |      | 5! 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1         |       |      | Arrangements of 11xxx                        |
|   |      | $(10) \times \frac{5!}{2!} = 600$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>A</b> 1 |       |      |                                              |
|   |      | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |      |                                              |
|   |      | 720 + 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1         |       |      | Adding two (or more) relevant cases.         |
|   |      | 720 1 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1711       |       |      | rading two (or more) relevant cases.         |
|   |      | = 1320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1         | [7]   |      | Fully correct.                               |
|   |      | 1320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111        | [,]   |      | runy correct.                                |
|   |      | OR: (e.g.) Using no 1's + one 1 + two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |       |      |                                              |
|   |      | 1's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |       |      |                                              |
|   |      | 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |       |      |                                              |
|   |      | $= {}^{5}P_{5} + 5 \times {}^{5}P_{4} + 10 \times {}^{5}P_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |      |                                              |
|   |      | $= {}^{5}P_{5} + 5 \times {}^{5}P_{4} + 10 \times {}^{5}P_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |       |      |                                              |
|   |      | 100 - 600 - 600 - 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |       |      |                                              |
|   |      | = 120 + 600 + 600 = 1320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |       | [10] |                                              |
| 6 | (i)  | v = t(t-2)(t-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1         |       |      | Set $v = 0$ and attempt to solve.            |
|   | (1)  | v = v(v - 2)(v - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,111      |       |      | Set V 6 and attempt to sorve.                |
|   |      | $t \neq 0$ so $t = 2$ and 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1         |       |      | Fully correct.                               |
|   |      | $t \neq 0$ so $t - 2$ and 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AI         |       |      | runy correct.                                |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |      | SC: D1 for both $t = 2$ and $t = 4$ found by |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |      | SC: B1 for both $t = 2$ and $t = 4$ found by |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |      | substitution or stated without working, and  |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |      | B1 if shows/explains there are no other      |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |      | values.                                      |
|   |      | California de la compania del compania del compania de la compania del compania del compania de la compania del compania d | D1         |       |      |                                              |
|   |      | Cubic graph crossing the t axis at 0 & 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1         |       |      |                                              |
|   |      | other places.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |       |      |                                              |
|   |      | F-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D1         | ran l |      |                                              |
|   |      | Fully correct <u>curve</u> , axes and intercepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1         | [4]   |      |                                              |
|   |      | labelled and curve only between $t = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |       |      |                                              |
|   |      | and 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |       |      |                                              |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |      | D: 00                                        |
|   | (ii) | $a = 3t^2 - 12t + 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1         |       |      | Differentiate v.                             |
| 1 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1         |       |      | All terms correct. Allow if found in (i) and |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |      | 1 1                                          |
|   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |      | used here.                                   |
|   |      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |       |      |                                              |
|   |      | $= 12 - 24 + 8 = -4 \text{ (ms}^{-2}\text{)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1         | [3]   |      | used here. Substitute $t = 2$ . c.a.o        |

| Page 5 | Mark Scheme           | Syllabus | Paper |
|--------|-----------------------|----------|-------|
|        | Pre-U – May/June 2013 | 9794     | 03    |

|   | (iii) | $x = \frac{t^4}{4} - 2t^3 + 4t^2 + c$                                                                             | M1<br>A1 |     |      | Integrate <i>v</i> . All terms correct; condone omission of                                        |
|---|-------|-------------------------------------------------------------------------------------------------------------------|----------|-----|------|----------------------------------------------------------------------------------------------------|
|   |       | 4                                                                                                                 |          |     |      | "+ c". Allow definite integral as alternative.                                                     |
|   |       | x = 0 when $t = 0$ therefore $c = 0$                                                                              | A1       |     |      | Deal with $c$ correctly or consider lower limit of definite integral.                              |
|   |       | When $t = 2$ , $x = 4 - 16 + 16 = 4$                                                                              | A1       |     |      | Indep of previous A1.                                                                              |
|   |       | So average speed = $4/2$                                                                                          | M1       |     |      | Use formula for average speed.                                                                     |
|   |       | $= 2 \text{ (ms}^{-1})$                                                                                           | A1       | [6] | [13] | Ft <i>their</i> $x$ when $t = 2$ .                                                                 |
| 7 | (i)   | Let the velocities of $A$ and $B$ after the collision be $v$ and $w$ .                                            |          |     |      |                                                                                                    |
|   |       | $4mu = 4mv + 2mw$ $\therefore 2u = 2v + w$                                                                        | M1       |     |      | Use of conservation of momentum: a correct equation, consistent with a diagram, if present.        |
|   |       | eu = w - v                                                                                                        | M1       |     |      | Use of N.E.L.: a correct equation, consistent with a diagram, if present.                          |
|   |       | $v = \frac{1}{3}(2-e)u$ and $w = \frac{2}{3}(1+e)u$                                                               | M1<br>A1 | [4] |      | Solve simultaneous equations. Both correct. Accept "w" unsimplified.                               |
|   | (ii)  | If $e = \frac{1}{2}$ then $v = \frac{1}{2}u$ and $w = u$                                                          | B1       | [1] |      | Ft <i>their v</i> and w in (i).                                                                    |
|   | (iii) | After A collides with B velocities are: $u/2$ , $u$ (and 0) respectively.                                         | M1       |     |      | Apply the result from (i) at least once. Or a complete correct method for the <i>BC</i> collision. |
|   |       | After <i>B</i> collides with <i>C</i> velocities are: $u/2$ , $u/2$ and <i>u</i> respectively.                    | A1       | [2] |      | All correct, including A.                                                                          |
|   | (iv)  | A and B have the same velocity and C is moving away from them so there can be no further collisions.              | B1       | [1] | [8]  | Ft (iii). Must consider all 3 particles.                                                           |
| 8 | (i)   | $x = Ut\cos\theta$                                                                                                | В1       |     |      |                                                                                                    |
|   |       | $y = Ut\sin\theta - \frac{1}{2}gt^2$                                                                              | B1       |     |      | Allow $g = 9.8$ .                                                                                  |
|   |       | $t = \frac{x}{U\cos\theta}$                                                                                       | M1       |     |      | Make <i>t</i> the subject of <i>x</i> equation and substitute.                                     |
|   |       | $\therefore y = U\left(\frac{x}{U\cos\theta}\right)\sin\theta - \frac{1}{2}g\left(\frac{x}{U\cos\theta}\right)^2$ |          |     |      |                                                                                                    |
|   |       | $= x \tan \theta - \frac{gx^2}{2U^2 \cos^2 \theta}$                                                               | A1       | [4] |      | Accept any correct form/unsimplified.                                                              |

| Page 6 | Mark Scheme           | Syllabus | Paper |
|--------|-----------------------|----------|-------|
|        | Pre-U – May/June 2013 | 9794     | 03    |

| (ii  | $y = 0$ and $x \ne 0$ gives $x = \frac{U^2}{g} \sin 2\theta$                                     | M1       |     |      | Set $y = 0$ and attempt to make $x$ or $\sin 2\theta$ the subject. Allow other equivalent methods e.g by solving a quadratic $(t^2 - 4t + 1 = 0)$ in $\tan \theta (= 2 \pm \sqrt{3})$ . |
|------|--------------------------------------------------------------------------------------------------|----------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | $\therefore \sin 2\theta = \frac{gx}{U^2} = \frac{10 \times 45}{30^2} = 0.5$                     | A1       |     |      | Substitute and obtain 0.5 (or $\tan \theta$ ) correctly.                                                                                                                                |
|      | This has 2 solutions so there are 2 trajectories.                                                | B1       |     |      | Require an explicit statement to this effect.                                                                                                                                           |
|      | $\therefore \theta = 15^{\circ} \text{ or } 75^{\circ}$                                          | A1 [     | [4] |      | Both correct.                                                                                                                                                                           |
| (iii | $\theta$ = 15° is fast (and low).                                                                | B1       |     |      | "Advantage" of one. (ft (ii))                                                                                                                                                           |
|      | $\theta$ = 75° is high (more likely to clear any obstacles).                                     | В1 [     | [2] |      | "Advantage" of the other. (ft (ii))                                                                                                                                                     |
|      |                                                                                                  |          |     | [10] | SC B1 only for just "high" and "low". Allow other reasonable "advantages".                                                                                                              |
| 9 (i | Diagram with weight, normal contact and friction forces added.                                   | B1 [     | [1] |      | Do not accept both $T$ and the components of $T$ shown.                                                                                                                                 |
| (ii  | $F = T\cos\theta$                                                                                | B1       |     |      | Resolve horizontally.                                                                                                                                                                   |
|      | $mg = R + T\sin\theta$                                                                           | B1       |     |      | Resolve vertically.                                                                                                                                                                     |
|      | $F = \mu R$                                                                                      | M1       |     |      | Limiting friction                                                                                                                                                                       |
|      | $T\cos\theta = \mu(mg - T\sin\theta)$ $\therefore T = \frac{\mu mg}{\cos\theta + \mu\sin\theta}$ | M1 [     | [4] |      | Eliminate <i>F</i> and <i>R</i> and rearrange to given answer. Must be convincing – require at least one intermediate line.                                                             |
| (iii | With $\mu = 0.75$ ,<br>min T occurs at max $(\cos \theta + 0.75 \sin \theta)$ .                  | M1       |     |      | Allow substitution for $\mu$ at any stage.                                                                                                                                              |
|      | EITHER $-\sin\theta + 0.75\cos\theta = 0$                                                        | M1<br>A1 |     |      | Differentiate and set $= 0$ .                                                                                                                                                           |
|      | $\tan \theta = 0.75 : \theta = invtan(0.75) = 36.9^{\circ}$                                      | A1 [     | [4] |      |                                                                                                                                                                                         |
|      | OR Use of $R\cos(\theta - \alpha)$ or $R\sin(\theta + \alpha)$ .                                 | M1       |     |      | And set $cos()$ or $sin() = 1$ .                                                                                                                                                        |
|      | $\alpha = 36.9^{\circ} \text{ or } 53.1^{\circ}$                                                 | A1       |     |      | As appropriate.                                                                                                                                                                         |
|      | θ= 36.9°                                                                                         | A1       |     | [9]  |                                                                                                                                                                                         |