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1 (i) Solve the equation x2 − 8x + 4 = 0, giving your answer in the form p ± q
√

3, where p and q are

integers. [2]

(ii) Expand and simplify (6 + 2
√

3)(2 − √
3). [3]

2
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The diagram shows a triangle ABC. The vertices have coordinates A (3, −7), B (9, 1) and C (−1, −5).
(i) (a) Find the length of the side AB. [2]

(b) Find the coordinates of the mid-point of AB. [1]

(c) A circle has diameter AB. Find the equation of the circle in the form (x − a)2 + (y − b)2 = r2,

where a, b and r are constants to be found. [3]

(ii) Find the equation of the line l passing through B parallel to AC. [3]

3 Find the exact value of ã 1

0

(ex − x) dx. [4]

4 Use logarithms to solve the equation 22x−1 = 5. [4]

5 Sketch, on separate diagrams, the graphs of the following functions for 0 ≤ x ≤ 2π giving the

coordinates of all points of intersection with the axes.

(i) y = sin x. [1]

(ii) y = sin(x + 1
6
π). [2]

6 (i) An arithmetic sequence has first term 5 and fifth term 37.

(a) Find an expression for u
n
, the nth term of the sequence, in terms of n. [4]

(b) Find an expression for S
n
, the sum of the first n terms of this sequence, in terms of n. [2]

(ii) Hence, or otherwise, calculate
25

∑
n=5

(8n − 3). [2]
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7 Let y = (2x − 3)e−2x.

(i) Find
dy

dx
, giving your answer in the form e−2x(ax + b), where a and b are integers. [3]

(ii) Determine the set of values of x for which y is increasing. [2]

8 Solve the differential equation
dy

dx
= −y2x3, where y = 2 when x = 1, expressing your solution in the

form y = f(x). [6]

9

O N

M

r

2 radx

The diagram shows a sector of a circle, OMN. The angle MON is 2x radians, the radius of the circle

is r and O is the centre.

(i) Find expressions, in terms of r and x, for the area, A, and perimeter, P, of the sector. [2]

(ii) Given that P = 20, show that A = 100x

(1 + x)2
. [2]

(iii) Find
dA

dx
, and hence find the value of x for which the area of the sector is a maximum. [5]

10 (i) (a) Find ä ex

1 + ex dx. [2]

(b) Hence evaluate ä ln 3

0

ex

1 + ex dx, giving your answer in the form ln k, where k is an integer.

[3]

(ii) (a) Using the substitution u = 1 + ex, find ä ( ex

1 + ex )2

dx. [5]

(b) Hence find the exact volume of the solid of revolution generated when the curve given by

y = ex

1 + ex , between x = − ln 3 and x = ln 3, is rotated through 2π radians about the x-axis.

[2]

[Question 11 is printed on the next page.]
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11 The function f is defined by f : t  → 2 sin t + cos 2t for 0 ≤ t < 2π.

(i) Show that
df

dt
= 2 cos t(1 − 2 sin t). [2]

(ii) Determine the range of f. [5]

A curve C is given parametrically by x = 2 cos t + sin 2t, y = f(t) for 0 ≤ t < 2π.

(iii) Show that x2 + y2 = 5 + 4 sin 3t. [3]

(iv) Deduce that C lies between two circles centred at the origin, and touches both. [2]

(v) Find the gradient of the tangent to C at the point at which t = 0. [3]
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