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1 (i) Use of correct sum formula.  

Obtain correct unsimplified form 
8.01

)8.01(16 12

−

−

 

Obtain 74.5 or rounding to 74.5 but not 74 or 75 (74.50244) 

M1 
 

A1 
 

A1 

 

 

 

[3] 

 

 (ii) Use correct formula  

 

Obtain 80. 

M1 

 

A1 

 
 

[2] 

 
 

[5] 

2 (i) f(1) = 0 clearly shown. 

 

Attempt method  for division by (x – 1) only 

Obtain x2 – 2x – 15 

Obtain (x – 1)(x + 3)(x – 5)  

B1 

 

M1 

A1 

A1 

 

 

 
 

[4] 

 

 (ii)
 State any two correct roots.  

State x = –3, 1, 5 

B1  

B1 

 

[2] 

 

[6] 

3  (i) Attempt differentiation of at least one term.  

Obtain 3x2 + 2x – 1 

M1 

A1 

 

[2] 
 

 (ii) State or imply their derivative equal to 0 

 

Attempt to solve quadratic.  

 

Obtain x = –1 and 1/3 

Obtain y = 4 and 
76

27
 (= 2.81) NIS   

B1 

 

M1 

 

A1 
 

A1 

 

 

 

 

 

 

[4] 

 

 

 

 

 
 

[6] 

4 (i) Attempt f(0) = 2 and f(1) = –3 or equiv  

Conclude correctly. 

M1 

A1 

 

[2] 
 

 (ii) Attempt to use iterative formula and no other method  

0.5, 0.3541666, 0.340737425, 0.339926715, 0.339879765, 0.339877052. 

Conclude 0.3399 

M1 

A1 

A1 

 
 

[3] 

 
 

[5] 

5 (i) It is a many-one function or equiv. B1 [1]  

 (ii) Attempt to form gf(x)  

Obtain 7x2 – 2 only 

M1 

A1 

 

[2] 
 

 (iii) Attempt to make x the subject.  

Obtain )2(
7

1
+x  only. 

M1 
 

A1 

 

 

[2] 

 

 

[5] 

6 (i) State 3 – i B1 [1]  

 (ii) Show 3 + i on an Argand diagram  

Show 3 – i 

B1 

B1  

 

[2] 

 

 (iii) Show 9 + 6i – 1.  

= 8 + 6i 

B1 

B1 

 

[2] 
 

[5] 
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7 (i) State 1 – (0.5)(2x) 

State (0.5)(0.5)(–0.5)(2x)2   

Attempt 3)2(
!3

2

3

2

1

2

1

x±







 −







 −









 

Obtain –0.5x3   

B1 

B1 

 
 

M1 
 

A1 

 

 

 

 
 

 

[4] 

 

 (ii) |x| < 0.5 or equiv B1 [1]  

 (iii) Obtain 2 – x correctly by partial expansion of their bracket 

State a = –2 correctly by partial expansion of their bracket 

Attempt to multiply (2 + x) and their expansion. Must show at least 7 terms 

State b = –1.5 

B1 

B1 

M1 

A1 

 

 
 

[4] 

 

 
 

[9] 

8 (i) Attempt to eliminate fractions by choosing suitable x values or sim eqns 

Obtain 2x + 11 = A(x + 3) + B(2x + 1) OR  

A + 2B = 2 and 3A + B = 11 

Obtain A = 4 

B = –1 

M1 

 

A1 

A1 

A1 

 

 
 

 

[4] 

 

 (ii) Attempt integration to obtain at least one ln term, either P ln(2x + 1) or 

Qln(x + 3) 

Obtain 2ln(2x + 1) − ln(x + 3) 

Use limits of 2 and 0 in correct order in any function 

Attempt use of any log law once on their exact expression 

Obtain ln15 NIS 

M1 

 

A1 

M1 

M1 

A1 

 

 

 

 
 

[5] 

 

 

 

 
 

[9] 

9 (i) 

 

Obtain ±111 anywhere  

Obtain at least one of 198  or 285  

Attempt cos θ = 
CBCA

CBCA ⋅
  

Obtain 
285198

111

×

 

Obtain     62.14°      (62.14276°)  

M1 
 

 

B1 
 

M1 

 
 

A1 
 

A1 

 
 

 
 

 

 
 

 
 

[5] 

 

 (ii) Use 0.5 (their AC)(their CB)sin ACB   

 

Obtain 105 

M1 

 

A1 

 

 

[2] 

 

  

 (iii) Attempt b – a = 
















−
















7

0

1

1

9

13

 or a – b.  

 

Obtain 
















−

=
















− 2

3

4

3

6

9

12

 or 
















−

−=
















−

−

2

3

4

3

6

9

12

 in column vector form or aef      

Obtain r = i + 0j + 7k + λ(4i + 3j – 2k) AG 

 

M1 

 

 

 

 

A1 

 
 

A1 

 

 

 

 

 

 

 

 
 

[3] 

 

 

 

 

 

 

 

 
 

[10] 



Page 4 Mark Scheme: Teachers’ version Syllabus Paper 

 Pre-U – May/June 2012 9794 01 
 

© University of Cambridge International Examinations 2012 

 

10 (i) Write the bracketed expression in terms of sin and cos. 









−

θ

θ

θ

θ

2

2

2

2

cos

sin

sin

cos
 

 

Sight of sin22θ = ksin2
θ cos2

θ 

Obtain 4(cos4
θ – sin4

θ) AG 

Factorise cos4
θ – sin4

θ  

State explicitly cos2
θ + sin2

θ = 1 to obtain 4cos 2θ  AG 

 

M1 

 

 

M1 

A1 

M1 

A1 

 
 

 

 

 

 

 

[5] 

 

 (ii) Divide by 4 and cos–1 in correct order for at least one angle 

Divide angles by 2 

Obtain two angles from correct working 

Obtain 30, 150, 210 and 330 

M1 

M1 

A1 

A1 

 

 
 

[4] 

 

 

 

[9] 
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11 (i) Use f′= 1 and g = ln x and apply the correct formula for integration by parts 

Obtain correctly ∫ +−= cxxxxx lndln AG 

M1 
 

A1 

 

[2] 

 

 (ii) (a) METHOD 1 INTEGRATION  BY PARTS USING (ln x)2 AS f′= ln x and  

g = ln x 

Obtain (ln x)(x ln x –x) – f ( )dx x∫  

Obtain g(x) – x

x

xxx

d 
ln

∫
−

 

Attempt to simplify integral and substitute result from (i) 

Obtain ∫ −−=− xxxxxx lnd)1(ln  and hence x(ln x)2 – 2x ln x + 2x (+ c). 

 

METHOD 2 INTEGRATION BY PARTS USING (ln x)2 AS 1× (ln x)2 

Obtain x (ln x)2 – f ( )dx x∫  

Obtain g(x) − x

x

xx

d 
ln2

∫  

Attempt to simplify integral and substitute result from (i) 

Obtain ∫ −= )ln(2dln2 xxxxx  and hence  

x(ln x)2 – 2x ln x + 2x (+ c). 

 

METHOD 3 INTEGRATION BY PARTS TWICE USING (ln x)2 = u2 

Obtain u2eu – f ( )dx x∫  

Obtain g(x) – 2 e  d
u

u u∫  

Attempt to integrate again 

Obtain 2 e  d 2( e e )u u u

u u u= −∫  and hence  

x(ln x)2 – 2x ln x + 2x (+ c). 

 

 

B1 

 

B1 
 

M1 

A1 

 

 

 

B1 

 

B1 
 

M1 
 

 

A1 

 

 

B1 
 

B1 
 

M1 

 
 

A1 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 
 

 

[4] 

 

 (ii) (b) METHOD 1 USING PARTS 

Attempt integration by parts as g(x) – f ( )dx x∫  

Obtain (ln x)(ln(ln x)) – f ( )dx x∫  

Obtain g(x) – ∫ x

x

d
1

 

Obtain (ln x)(ln(ln x)) – ln x + c 

Sight of + c in last two parts 

 

METHOD 2 USING SUBSTITUTION 

Attempt to obtain an integral in u by stating or implying u = ln x AND  

du = 
x

1
dx OR u = ln x AND x = eu AND dx = eu du  

Obtain directly ln du u∫ OR 
ln

e d
e

u

u

u

u∫  and cancel to obtain uudln∫  

Obtain u(ln u) – u  

Obtain (ln x)(ln(ln x)) – ln x (+ c) 

Use + c in (b)(i) and (ii) 

 

M1 
 

A1 
 

A1 
 

A1 

B1 

 

 

 
 

M1 

 
 

A1 
 

A1 

A1 

B1 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

[5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

[11] 

 




