

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9794 MATHEMATICS

9794/01

Paper 1 (Pure Mathematics 1), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper	-
			Pre-U – May/June 2012	9794	01	
						•
1	(i)	Use of	correct sum formula.	M1		
		Obtain	correct unsimplified form $\frac{16(1-0.8^{12})}{1-0.8}$	A1		
		Obtain	74.5 or rounding to 74.5 but not 74 or 75 (74.50244)	A1	[3]	
	(ii)	Use co	rrect formula	M1		
		Obtain	80.	A1	[2]	[5]
2	(i)	f(1) = 0) clearly shown.	B1		
		Attemp	ttempt method for division by $(x - 1)$ only			
		Obtain	Obtain $x^2 - 2x - 15$			
		Obtain	Obtain $(x - 1)(x + 3)(x - 5)$		[4]	
	(ii)	State a	ny two correct roots.	B1	∧	
		State <i>x</i>	= -3, 1, 5	B1	[2]	[6]
3	(i)	Attemp	ot differentiation of at least one term.	M1		
		Obtain	$3x^2 + 2x - 1$	A1	[2]	
	(ii)	State o	r imply their derivative equal to 0	B1		
		Attemp	ot to solve quadratic.	M1		
		Obtain	x = -1 and $1/3$	A1		
		Obtain	$y = 4$ and $\frac{76}{27}$ (= 2.81) NIS	A1	[4]	[6]
			21			
4	(i)	Attemp	of $f(0) = 2$ and $f(1) = -3$ or equiv	M1		
		Conclu	de correctly.	A1	[2]	
	(ii)	Attemr	ot to use iterative formula and no other method	M1		
		0.5, 0.3	3541666, 0.340737425, 0.339926715, 0.339879765, 0.33987	77052. A1		
		Conclu	ide 0.3399	A1	[3]	[5]
5	(i)	It is a r	nany-one function or equiv.	B1	[1]	
	(ii)	Attemp	to form $gf(x)$	M1		
		Obtain	$7x^2 - 2$ only	A1	[2]	
	(iii)	Attemp	ot to make x the subject.	M1		
		Obtain	$\frac{1}{7}(x+2)$ only.	A1	[2]	[5]
6	(i)	State 3	- i	B1	[1]	
	(ii)	Show 3	3 + i on an Argand diagram	B1		
		Show 3	3-i	B1	√ [2]	
	(iii)	Show 9	0 + 6i - 1.	B1		
		= 8 + 6i		B1	[2]	[5]

	Page 3		Mark Scheme: Teachers' version	Syllabu	JS	Paper	
			Pre-U – May/June 2012	9794		01	
7	(i)	State 1	-(0.5)(2x) (0.5)(0.5)(-0.5)(2x) ²		B1 D1		
		State ((1)(-1)(-3)		DI		
		Attemp	of $\frac{\left(\frac{2}{2}\right)\left(\frac{2}{2}\right)\left(\frac{1}{2}\right)}{3!}(\pm 2x)^3$		M1		
		Obtain	$-0.5x^3$		A1	[4]	
	(ii)	x < 0.	5 or equiv		B1	[1]	
	(iii)	Obtain	Obtain $2 - x$ correctly by partial expansion of their bracket		B1		
		State a	= -2 correctly by partial expansion of their bracket	-	B1		
		Attemp State b	Attempt to multiply $(2 + x)$ and their expansion. Must show at least 7 terms			[4]	[9]
0		Attoma	State $v = -1.5$				L' J
0	(1)	Obtain	2x + 11 = A(x + 3) + B(2x + 1) OR	equis			
		A + 2B Obtain	= 2 and 3A + B = 11 $A = 4$		A1 A1		
		B = -1			A1	[4]	
	(ii)	Attemp	bt integration to obtain at least one ln term, either $P \ln(2x + 1)$) or	M1		
		$Q \ln(x - Q)$	+3) $2\ln(2x+1) - \ln(x+3)$		Λ1		
		Use lin	nits of 2 and 0 in correct order in any function		M1		
		Attemp	ot use of any log law once on their exact expression		M1		
		Obtain	In15 NIS		A1	[5]	[9]
9	(i)	Obtain	±111 anywhere		M1		
		Obtain	at least one of $\sqrt{198}$ or $\sqrt{285}$		B1		
		Attemp	pt cos $\theta = \frac{CA \cdot CB}{ CA CB }$		M1		
		CA CB					
		Obtain	$\frac{111}{\sqrt{198} \times \sqrt{285}}$		A1		
		Obtain	62.14° (62.14276°)		A1	[5]	
	(ii)	Use 0.5	5 (their AC)(their CB)sin ACB		M1		
		Obtain	105		A1	[2]	
			(13) (1)				
	(iii)	Attemp	of $\mathbf{b} - \mathbf{a} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{b} & \mathbf{b} \end{bmatrix} - \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{b} & \mathbf{b} \end{bmatrix}$ or $\mathbf{a} - \mathbf{b}$.		M1		
			$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 7 \end{pmatrix}$				
			(12) (4) (-12) (4)				
		Obtain	$\begin{vmatrix} 9 \\ = 3 \end{vmatrix}$ 3 or $\begin{vmatrix} -9 \\ = -3 \end{vmatrix}$ 3 in column vector form	or aef	A1		
			$\begin{pmatrix} -6 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} 6 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix}$				
		Obtain	$\mathbf{r} = \mathbf{i} + 0\mathbf{j} + 7\mathbf{k} + \lambda(4\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}) \text{ AG}$		A1	[3]	[10]

	Page 4	Mark Scheme: Teachers' version	Syllabu	S	Paper	
		Pre-U – May/June 2012	9794		01	
10	(i) Write t	he bracketed expression in terms of sin and cos. $\left(\frac{\cos^2\theta}{\sin^2\theta} - \frac{\sin^2\theta}{\cos^2\theta}\right)$	$\left(\frac{\sin^2\theta}{\cos^2\theta}\right)$	M1		
	Sight o Obtain Factori State e	If $\sin^2 2\theta = k \sin^2 \theta \cos^2 \theta$ $4(\cos^4 \theta - \sin^4 \theta) AG$ se $\cos^4 \theta - \sin^4 \theta$ xplicitly $\cos^2 \theta + \sin^2 \theta = 1$ to obtain $4\cos 2\theta AG$		M1 A1 M1 A1	[5]	
	(ii) Divide Divide Obtain Obtain	by 4 and cos ⁻¹ in correct order for at least one angle angles by 2 two angles from correct working 30, 150, 210 and 330		M1 M1 A1 A1	[4]	[9]

	Page 5		Mark Scheme: Teachers' version	Syllabu	IS	Paper	,
			Pre-U – May/June 2012	9794		01	
11	(i)	Use f'=	1 and $g = \ln x$ and apply the correct formula for integration	by parts	M1		
		Obtain	correctly $\int \ln x dx = x \ln x - x + c AG$	51	Δ1	[2]	
					111	[-]	
	(ji) (a)	мети	IOD 1 INTEGRATION BY DADTS USING $(1 + x)^2 \wedge S f' = 1$	In r and			
	$(\mathbf{II})(\mathbf{a})$	METHOD I INTEGRATION BY PARTS USING $(\ln x)$ AS $f = \ln x$ and $g = \ln x$					
		Obtain	$(\ln r)(r \ln r - r) - \int f(r) dr$		D1		
		Obtain			DI		
		Obtain	$g(x) - \int \frac{x \ln x - x}{x} dx$		B 1		
			$\int_{X} x$		DI		
		Attemp	to simplify integral and substitute result from (1)		M1		
		Obtain	$\int (\ln x - 1) dx = x \ln x - x - x \text{ and hence } x (\ln x)^2 - 2x \ln x + 2$	2x(+c).	AI		
		METH	IOD 2 INTEGRATION BY PARTS USING $(\ln x)^2$ AS $1 \times ($	$\ln x)^2$			
		Obtain	$x(\ln x)^2 - \int f(x) dx$		B1		
			$2x \ln x$.		21		
		Obtain	$g(x) - \int \frac{dx}{dx} dx$		B1		
		Attemp	t to simplify integral and substitute result from (i)		M1		
		Obtain	$2 \int \ln x dx = 2(x \ln x - x)$ and hence				
		$(1 - 1)^2$			A 1		
		$x(\ln x)$	$-2x \ln x + 2x (+c).$		AI		
		метн	IOD 3 INTEGRATION BY PARTS TWICE USING $(\ln x)^2$	$= u^2$			
		Obtain	$u^2 e^u - \int f(x) dx$		B1		
					21		
		Obtain	$g(x) - \int 2ue^u du$		B1		
		Attemp	t to integrate again		M1		
		Obtain	$\int 2ue^u du = 2(ue^u - e^u)$ and hence				
		$x(\ln x)^2$	$1 - 2x \ln x + 2x (+ c)$.		A1	[4]	
	(ii) (b)	METH	IOD 1 USING PARTS				
		Attemp	t integration by parts as $g(x) - \int f(x) dx$		M1		
		Obtain	$(\ln r)(\ln(\ln r)) = \int f(r) dr$		4.1		
		Obtain			AI		
		Obtain	$g(x) - \int \frac{1}{x} dx$		A1		
		01.4.1	J_X				
		Sight o	$(\ln x)(\ln(\ln x)) - \ln x + c$ f + c in last two parts		AI D1		
		Signt 0			DI		
		METH	IOD 2 USING SUBSTITUTION				
		Attemp	t to obtain an integral in <i>u</i> by stating or implying $u = \ln x A^2$	ND			
		$du = \frac{1}{2}$	$dr OR u = \ln r AND r = e^{u} AND dr = e^{u} du$		M1		
		$\frac{du}{x}$	$u_{A} \bigcirc (u_{A}) = u_{A}) = u_{A}) = u_{A}) = u_{A} $		1411		
		Ohtain	directly $\int \ln u du OR \int \frac{\ln u}{du} e^{u} du$ and cancel to obtain $\int \ln u du$	11	Δ1		
		Obtain	$\int e^{u}$	и	AI		
		Obtain	$u(\ln u) - u$		A1		
		Obtain	$(\ln x)(\ln(\ln x)) - \ln x (+c)$		Al D1	[5]	[11]
		Use + a	$c \ln (\mathbf{D})(\mathbf{I})$ and (\mathbf{II})		DI	[-]	[11]