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Section A: Pure Mathematics (80 marks)

You are advised to spend no more than 2 hours on this section.

1 Find the equation of the line passing through the points (−2, 5) and (4, −7). Give your answer in the

form y = mx + c. [3]

2

O

A

B
q

r

The diagram shows a sector OAB of a circle with centre O and radius r cm in which angle AOB is

θ radians. The sector has a perimeter of 18 cm.

(i) Show that θ =
18 − 2r

r
. [2]

(ii) Find the area of the sector in terms of r, simplifying your answer. [2]

3 Solve the equation 3 + 2x = |7 − 4x |. [3]

4 (i) Show that 4 ln x − ln(3x − 2) − ln x2 = ln( x2

3x − 2
), where x > 2

3
. [3]

(ii) Hence solve the equation 4 ln x − ln(3x − 2) − ln x2 = 0. [3]

5 A circle has equation x2 + y2 = 16. Find the volume generated when the region in the first quadrant

which is bounded by the circle and the lines x = 1 and x = 2 is rotated through 2π radians about the

x-axis. [5]

6 (i) Sketch, on a single diagram, the graphs of y = e
1
5
x

and y = x and state the number of roots of the

equation e
1
5
x
= x. [3]

(ii) Use the Newton-Raphson method with x
0
= 0 to determine the value of a root of the equation

e
1
5
x
= x correct to 3 decimal places. [4]
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7 (i) Given that the point (−1, −2, 4) lies on both the lines

r = ( 2

−3

a

) + λ(−3

1

1

) and r = ( 2

4

b

) + µ(−1

−2

1

) ,

find a and b. [3]

(ii) Find the acute angle between the lines. [4]

8 (i) Find and simplify the first three terms in the expansion of (1 − 4a)
1
2 in ascending powers of a,

where |a | < 1
4
. [4]

(ii) Hence show that the roots of the quadratic equation x2 − x + a = 0 are approximately 1 − a − a2

and a + a2, where a is small. [4]

9 (i) Prove that sin 3θ = 3 sin θ − 4 sin3 θ and deduce that

sin θ + sin 3θ = 4 sin θ cos2 θ. [5]

(ii) Hence find the values of θ such that 0◦ < θ < 180◦ that satisfy the equation

cot2 θ = sin θ + sin 3θ. [4]

10 (a) The complex number ß is such that |ß| = 2 and arg ß = −2
3
π. Find the exact value of the real part

of ß and of the imaginary part of ß. [2]

(b) The complex numbers u and v are such that

u = 1 + ia and v = b − i,

where a and b are real and a < b. Given that uv = 7 + 9i, find the values of a and b. [7]

11 An arithmetic progression has first term a and common difference d. The first, ninth and fourteenth

terms are, respectively, the first three terms of a geometric progression with common ratio r, where

r ≠ 1.

(i) Find d in terms of a and show that r = 5
8
. [7]

(ii) Find the sum to infinity of the geometric progression in terms of a. [2]

12 Find the general solution of the differential equation

dy

dx
=

y

x(1 + x2)

giving your answer in the form y = f(x). [10]
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Section B: Probability (40 marks)

You are advised to spend no more than 1 hour on this section.

13 (a) A random sample of young people in a certain town comprised 312 boys and 253 girls. Denoting

a boy’s age by x years and a girl’s age by y years, the following data were obtained:

Σ x = 4618, Σ x2 = 68 812, Σy = 3719, Σy2 = 55 998.

(i) Calculate the mean and standard deviation of the ages of the boys in the sample and also of

the girls in the sample. [3]

(ii) Use these results to comment on the distribution of the ages of the boys and girls in the

sample. [1]

(b) How many arrangements of the letters of the word DEFEATED are there in which the Es are

separated from each other? [3]

14 (a) The table below relates the values of two variables x and y.

x 1 A A + 3 10

y 2 A − 1 A 5

A is a positive integer and Σ xy = 92.

(i) Calculate the value of A. [3]

(ii) Explain how you can tell that the product-moment correlation coefficient is 1. [1]

(b) A music society has 300 members. 240 like Puccini, 100 like Wagner and 50 like neither.

(i) Calculate the probability that a member chosen at random likes Puccini but not Wagner.

[3]

(ii) Calculate the probability that a member chosen at random likes Puccini given that this

member likes Wagner. [2]

15 A firm produces chocolate bars whose weights are normally distributed with mean 120 g and standard

deviation 6 g.

(i) Bars which weigh more than 114 g are sold at a profit of 15p per bar. The remaining bars are

sold at no profit. Show that the expected profit per 100 bars is £12.62. [5]

(ii) It is subsequently decided that bars which weigh more than x g should be sold at a profit of 20p

per bar. Those which weigh x g or less are sold to employees at a profit of 3p per bar. The

expected profit per 100 bars is £19.17. Find the value of x. [7]
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16 In a factory, computer chips are produced in large batches. A quality control procedure is used for

each batch which requires a random sample of 8 chips to be tested. If no faulty chip is found, the

batch is accepted. If two or more are faulty, the batch is rejected. If one is faulty, a further sample

of 4 is selected and the batch is accepted if none of these is faulty. The probability of any chip being

faulty is q.

(i) Show that the probability of accepting a batch is p8(1 + 8p3 − 8p4), where p = 1 − q. [6]

(ii) Find the expected number of chips sampled per batch, giving your answer in terms of p. Hence

show that when p = 0.75, the expected number of chips sampled per batch is approximately 9.

[6]
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