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Substitute x = 4 into equation or attempt factorisation of (x – 4) M1  1 (i) 

Verify y(4) = 0 or that (x – 4) is a factor A1 [2] 

May be seen in part (i)   

( )( )4441612
23

++−=−− xxxxx  B1 B1  

 (ii) 

   ( )( )( )224 ++−= xxx  B1 [3] 

Attempt to multiply out brackets M1  

Obtain 61 – 28 .3  A1 [2] 

   

2 (i) 

SC For answer given without working – B1   

55125 = seen B1  

Multiply numerator and denominator by 52 − , and expand. M1  

and use of ( )( ) .15252 −=−+  A1  

 (ii) 

Obtain  25 – 10 .5  AG A1 [4] 

xux

x

v

==    ,3sin
d

d
 M1  

1
d

d
   ,3cos

3

1
=−=

x

u

xv  A1  

Obtain an expression of the form ∫± dxxx )(g)(f  M1  

Obtain xxx

x

d 3cos
3

1
3cos

3
∫+−  A1√  

3 

cxx

x

++−= 3sin
9

1
3cos

3
                 CAO A1 [5] 

Shape of each graph (concavity). B1 B1  

Asymptote at 
2

π

 B1  

4 (i) 

Max/Min points clearly indicated at x = 0 and .π  B1 [4] 

Evidence that 
x

x

cos

1
sec =  B1  

Multiply by cos x, obtaining a quadratic.  M1  

Solve quadratic. M1  

Solutions x =π  A1  

and x = 0.841 A1 [5] 

 (ii) 

SC For either both in degrees or one in degress and one in radians – A1A0   
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Attempt to solve c = 1 ( or c < 1) for at least one drug, and obtain a solution. M1  

Obtain 54.9 (hours) for Antiflu; A1  

5 (i) 

Obtain 23.0 (hours) for Coldcure. A1 [3] 

Two decaying exponentials in the first quadrant showing M1  (ii) 

correct intercepts on the c-axis and crossing for some t > 0. A1 [2] 

Assume additive nature of the concentrations:  M1  (iii) 

.10.3e5e5
1007.03007.0

=+
×−×−  A1 [2] 

xxu d2d = or equivalent used M1  

Substitute to obtain u

u

de
2

1
2

1
 

 

−

∫  A1  

Obtain 











−

− u

2

1

e  A1  

Evaluate: 0.5          WWW A1 [4] 

6 (i) 

SC For 0.5 without working – B2    

22

2

1

2

1

e)(e1
d

d xx

xx
x

y −−

×−×+×=  M1 A1  

Equate to zero and find at least one point M1  

 (ii) 

Stationary points ( ); e,1 
5.0− ( ).e,1

5.0−
−−  A1 [4] 

(a) Not invertible B1  

 Not 1–1 or equivalent B1 [2] 

(b) (Minimum value of –1 at x = 1) B1  

 )(f1 x≤−  B1 [2] 

7 (i) 

 [B1 for correct interval; B1 for correct inequality]   

(a) ( ) .singh 2
xx =  B1  

 Obtain ( )x2cos1
2

1
−  with some working    AG B1 [2] 

(b) Sine wave M1  

 Period of π A1  

 (ii) 

 Completely correct A1 [3] 
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(a) θ
θ

cos1
d

d
−=

x

 B1  

 θ
θ

sin
d

d
=

y
 B1  

 
θ

θ

θθ cos1

sin

d

d

d

d

d

d

−

==

xy

x

y
 M1  

 θ

θ

θθ

2

1
cot

2

1
sin2

2

1
cos

2

1
sin2

2

==  A1 AG  

 At least two of ...2,0,2... ππθ −=  without any incorrect values B1 [5] 

(b) Rearranging give  toxy =    

 θθθ cossin1 −+=  M1  

  ( )αθ −+= sin1 A  M1  

 where 2=A  A1  

 and 
4

π

α =  A1 [4] 

(c) Consider sign of π
π

θ
π

θθ ,
2

at  
4

  sin 21 =







−−−  M1  

 Change of sign implies root:   

8 (i) 

 ( ) ( )







−− positive 2 and negative2

2
π

π

 A1 [2] 

θ

θ

cos2

sin

d

d

−

=

x

y
 B1  

xx

y

x

y

d

d

d

d

d

d

d

d

2

2
θ

θ
×







=         or equivalent M1  

 
( )

( )3cos2

1cos22

θ

θ

−

−

=     AEF, unsimplified A1  

 (ii) 

4

3
  0

d

d

2

2

==>= y

x

y
 A1 [4] 
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P has x-coordinate k. B1  

Region R has area xxkk
k

d
2

1 )( 

0 

22 ∫−×  or ∫ −

)(

0

2
k

dxxkx  M1  

33

3

1

2

1
kk −=    

9 (i) 

3

6

1
k=      AG  A1 [3] 

.equivalentor  
12

1
d 3

 

0 

2
kxxkx

a

∫ =−  M1  

   
a

xkx

0

32

3

1

2

1









−=  A1  

 (ii) 

   046
323
=+−=> akak        AG A1 [3] 

Differentiate the implicit equation wrt t: M1  

0
d

d
12

d

d
6

d

d
12

d

d
3

222
=+−−

t

a
a

t

k
ak

t

a
a

t

k
k  A1  

(< 3 errors) 
 

 A1 CAO  

Make substitutions and obtain .1
d

d
=

t

a
 A1 [4] 

OR:   

Differentiate the implicit equation wrt a or k M1  

012
d

d
612

d

d
3

222
=+−− a

a

k
aak

a

k
k  or 0

d

d
126

d

d
123

222
=+−−

k

a
aak

k

a
ak  A1  

Relate connected rates of change M1  

 (iii) 

Make substitutions and obtain .1
d

d
=

t

a
 A1  

( ) 










−

−
= appearmay  

12

2

dt

d
 formula The

2

k

ka
   

Attempt to factorise 46
3

+− kk  with linear factor  ( )2−k  M1  

Obtain ( )( )222
2

−+− kkk  A1  

Solve quadratic factor and obtain either or both of 1 3 −±=k  A1  

Correctly substitute into derivative formula and attempt to simplify M1  

 (iv) 

Obtain either or both of .31
d

d
±=

t

a
 A1 [5] 
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Any valid method, for example   

( )( )kiki 43.34. ++−=ACAB  M1  

10 (i) 

= 01212 =+−      Hence result.  A1 [2] 

Resolving along AB: 







= −

3

4
tancos20

1

AB
T  M1  

Obtain 12N.  A1  

Resolving along AC: N16
3

4
tansin20

1 =







= −

AC
T  A1 [3] 

 (ii) 

SC Both answers either unassigned or swapped – B1   

The vector tension is 12 x unit vector in AB direction M1  

ji 7.2  6.9 +−=  A1√ A1√ [3] 

 (iii) 

Or = –ai + bj where 
3

4
=

b

a
and a2 + b2 = (their TAB)

2

   

Use of 2

2

1
sin and cos gtVtyVtx −== θθ  M1 A1  

Solving formula in   substitute and for   0 xty =  M1  

11 (i) 











==

g

V

g

V
R

θθθ 2sincossin2
22

 A1 AG [4] 

 (ii) ( ) m100 implies y trajector theofsymmetry =R  B1 [1] 

1000=V   ( ) 1
ms 1010

−

=      (= theirRg × ) B1√  

Solving   

t101030 =
4

sin
π

 M1  

Obtain
5

3
=t  or 

θcosV

x
t = and substitute later A1 M1  

 (iii) 

Obtain m21=h  A1 [5] 
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12 (i) All forces shown: Applied, weight and reaction.  B1 [1] 

Net force up the slope ( )N1030sin2020 =−  B1  

Use 2
ms5'onaccelerati  massForce'

−

==>×= a  B1  

Applying ‘suva’ with 5 and 0 == au  M1  

 (ii) 

.5tv =  A1 [4] 

Let U and V ( )UV > be the speeds of the particles up the slope after the collision. 
An attempt at both of  

  

COM: VU ×+×=×−× 1251152  M1 A1√  

NEL: ( )( ) UV −=−−× 5152.0  M1 A1√  

Obtain -1
ms7=U  A1  

 (iii) 

‘suva’ gives impact.after   timeis   where,57 TTv −=  A1√ [6] 

As the system is in equilibrium, the tension in the string is T = mg B1  

Resolving at right angles to the plane:  M1  

αα cos2sin mgTR =+    

13 (i) 

giving ( ).sincos2 αα −= mgR  A1 AG [3] 

By implication °≤ 45α  (condone boundary case only) M1  

2

1
cos ≥α ;

2

1
sin ≤α  A1  

 (ii) 









−≥

2

1

2

2
mgR  A1 AG [3] 

Resolving up the slope   

( )αααα cossin2cossin2 −=−= mgTmgF  M1  

For this to be positive A1  

and combined with first line of solution of (ii)    

 (iii) 

1tan5.0 ≤< α  A1 AG [3] 

Using RF µ=  M1  

α

α

αα

αα
µ

tan2

1tan2

sincos2

cossin2

−

−

=

−

−

=  A1  

 (iv) 

Max value of .1tan when 1 is =αµ  A1 [3] 

 




