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1 Using any standard results given in the List of Formulae (MF20), show that 
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 for all positive integers n. [4] 

 

 

2 Find the area enclosed by the curve with polar equation r = sin θ + cos θ, 0 Y θ Y π
2

1
. [4] 

 

 

3 (i) Given that xy sinh=  for x [ 0, express 
x

y

d

d
 in terms of y only.  [3] 

 

 (ii) Find ∫
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.  [3] 

 

 

4 The curve C has equation y = 
3

1

2
+

+

x

x

. 

 

 (i) By considering a suitable quadratic equation in x, find the set of possible values of y for points on C. 

  [5] 

 

 (ii) Deduce the coordinates of the turning points on C.  [4] 

 

 

5 (i) Write down the 2 × 2 matrices which represent the following plane transformations: 

 

  (a) an anticlockwise rotation about the origin through an angle α; [1] 

 

  (b) a reflection in the line y = x tan(
2

1 β ). [1] 

 

 (ii) A reflection in the x-y plane in the line y = x tan(
2

1
θ ) is followed by a reflection in the line  

y = x tan( φ
2

1
). Show that the composition of these two reflections (in this order) is a rotation and 

describe this rotation fully.  [6] 

 

 

6 A group G has order 12. 

 

 (i) State, with a reason, the possible orders of the elements of G.  [2] 

 

 The identity element of G is e, and x and y are distinct, non-identity elements of G satisfying the three 

conditions  

     (1)   x has order 6, 

    (2)   x3 = y2, 

    (3)   xyx = y. 

 

 (ii) Prove that yx2y = x.  [3] 

 

 (iii) Prove that G is not a cyclic group.  [2] 
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7 (i) Use de Moivre’s theorem to show that tan 4θ = 
42

2

61

)1(4
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−
, where t = tan θ.  [5] 

 

 (ii) Given that θ is the acute angle such that tan θ = 
5

1 , express tan 4θ as a rational number in its simplest 

form, and verify that 

 

    )(tan4)(tan
5

11

239

11

4

1 −−

=+π . [4] 

 

 

8 The function f satisfies the differential equation 

 

x2 f M (x) + (2x − 1)f V(x) − 2f(x) = 3ex−1 + 1,      (∗) 

 

 and the conditions f(1) = 2, f V(1) = 3. 

 

 (i) Determine f M(1).  [2] 

 

 (ii) Differentiate (∗) with respect to x and hence evaluate f J(1).  [4] 

 

 (iii) Hence determine the Taylor series approximation for f(x) about x = 1, up to and including the term in 

(x −1)3.  [3] 

 

 (iv) Deduce, to 3 decimal places, an approximation for f(1.1).  [2] 

 

 

9 (i) Show that the substitution 
3

1

y
u =  transforms the differential equation 

x

y

d

d
 + y = 3xy4 into 

 

    
x

u

d

d
 −3u = −9x.  [3] 

 

 (ii) Solve the differential equation 
x

y

d

d
 + y = 3xy4, given that y = 

2

1  when x = 0. Give your answer in the 

form y3 = f(x).  [9] 

 

 

10 The line L has equation r = 
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λ  and the plane П has equation r. k=
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 (i) Given that L lies in П, determine the value of k.  [2] 

 

 (ii) Find the coordinates of the point, Q, in П which is closest to P(10, 2, −43). Deduce the shortest 

distance from P to П.  [5] 

 

 (iii) Find, in the form ax + by + cz = d, where a, b, c and d are integers, an equation for the plane which 

contains both L and P.  [6] 
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11 The complex number )13(i)13( ++−=w . 

 

 (i) Determine, showing full working, the exact values of |w| and arg w.  [4] 

  [You may use the result that .32)tan(
12

5
+=π ] 

 

 (ii) (a) Find, in the form reiθ, the three roots, z1, z2 and z3, of the equation z3 = w.  [4] 

 

  (b) Determine z1z2z3in the form a + ib.  [2] 

 

  (c) Mark the points representing z1, z2 and z3 on a sketch of the Argand diagram. Show that they form 

an equilateral triangle, ∆1, and determine the side-length of ∆1.  [5] 

 

  (d) The points representing kz1, kz2 and kz3 form ∆2, an equilateral triangle which is congruent to ∆1, 

and one of whose vertices lies on the positive real axis. Write down a suitable value for the 

complex constant k.  [1] 

 

 

12 (i) Let In = ∫ +

3 

0 

2
d16 xxx

n , for n [ 0. Show that, for n [ 2, 

 

    (n + 2)In = 125 × 3n−1 − 16(n − 1)In−2.  [6] 

 

 (ii) A curve has polar equation 4

4

1
θ=r  for 0 Y θ Y 3. 

 

  (a) Sketch this curve.  [2] 

 

  (b) Find the exact length of the curve.  [7] 

 

 

13 Define the repunit number, Rn, to be the positive integer which consists of a string of n 1s. Thus, 

 

R1 = 1,     R2 = 11,     R3 = 111,     ... ,     R7 = 1 111 111,     ... , etc. 

 

 Use induction to prove that, for all integers n [ 5, the number 

 

13 579 × Rn 

 

 contains a string of (n −4) consecutive 7s.  [6] 




