MAXIMUM MARK: 120

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
The following abbreviations may be used in a mark scheme:
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
aef Any equivalent form
art Answers rounding to
cwo Correct working only (emphasising that there must be no incorrect working in the solution)
ft Follow through from previous error is allowed
o.e. Or equivalent

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \& \[
\begin{aligned}
\& \sum_{r=1}^{n}\left(r^{2}-r+1\right)=\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r+\sum_{r=1}^{n} 1 \quad \text { Splitting summation and use of given results } \\
\& =\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)+n \\
\& =\frac{1}{3} n\left(n^{2}+2\right) \quad \text { legitimately }
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { B1 B1 } \\
\text { A1 }
\end{gathered}
\] \\
\hline 2 \& \& \[
\begin{aligned}
A \& =k \int(\sin \theta+\cos \theta)^{2} \mathrm{~d} \theta \& \& \text { including squaring attempt; ignore limits and } k \neq \frac{1}{2} \\
\& =\frac{1}{2} \int(1+\sin 2 \theta) \mathrm{d} \theta \& \& \begin{array}{l}
\text { for use of the double-angle formula } \\
\text { OR integration of } \sin \theta \cos \theta \text { as } k \sin ^{2} \theta \text { or } k \cos ^{2} \theta
\end{array} \\
\& =\frac{1}{2}\left[\theta-\frac{1}{2} \cos 2 \theta\right]_{0}^{\pi / 2} \& \begin{array}{ll}
\text { ft (constants only) in the integration; } \\
\& \\
\& =\frac{1}{4} \pi+\frac{1}{2}
\end{array} \&
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
B1 \\
A1 \\
A1
\end{tabular} \\
\hline 3 \& (i)

(ii) \& \begin{tabular}{l}
$y=(\sinh x)^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2}(\sinh x)^{-\frac{1}{2}} \cdot \cosh x \quad$ OR $\quad y^{2}=\sinh x \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\cosh x$
$$
=\frac{\sqrt{1+y^{4}}}{2 y}
$$
$$
\int \frac{2 y}{\sqrt{1+y^{4}}} \mathrm{~d} y=\int 1 . \mathrm{d} x
$$

By separating variables in (i)'s answer
$$
\Rightarrow x=\int \frac{2 y}{\sqrt{1+y^{4}}} \mathrm{~d} y
$$

But $x=\sinh ^{-1} y^{2}$ so $\int \frac{2 t}{\sqrt{1+t^{4}}} \mathrm{~d} x=\sinh ^{-1}\left(t^{2}\right)+C \quad$ condone missing " $+C^{\prime \prime}$

ALT. 1 Set $t^{2}=\sinh \theta, 2 t \mathrm{~d} t=\cosh \theta \mathrm{d} \theta \quad$ M1 Full substitution
$$
\int \frac{2 t}{\sqrt{1+t^{4}}} \mathrm{~d} t=\int \frac{\cosh \theta}{\sqrt{1+\sinh ^{2} \theta}} \mathrm{~d} \theta \quad \mathbf{A} \mathbf{1}=\int 1 . \mathrm{d} \theta=\theta=\sinh ^{-1}\left(t^{2}\right) \quad \mathbf{A} \mathbf{1}
$$

ALT. 2 Set $t^{2}=\tan \theta, 2 t \mathrm{~d} t=\sec ^{2} \theta \mathrm{~d} \theta \quad$ M1 Full substitution
$$
\begin{aligned}
\int \frac{2 t}{\sqrt{1+t^{4}}} \mathrm{~d} t & =\int \frac{\sec ^{2} \theta}{\sqrt{1+\tan ^{2} \theta}} \mathrm{~d} \theta \quad \mathbf{A} \mathbf{1}=\int \sec \theta \cdot \mathrm{d} \theta \\
& =\ln |\sec \theta+\tan \theta|=\ln \left|t^{2}+\sqrt{1+t^{4}}\right| \mathbf{A} \mathbf{1}
\end{aligned}
$$

 \&

M1 A1

A1

M1

A1

A1
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 4 \& (i) \& \(y=\frac{x+1}{x^{2}+3} \Rightarrow y \cdot x^{2}-x+(3 y-1)=0 \quad\) Creating a quadratic in \(x\)
\[
-\frac{1}{6} \leqslant y \leqslant \frac{1}{2} \quad \text { CAO }
\]
\[
y=\frac{1}{2} \text { substituted back } \Rightarrow \frac{1}{2}\left(x^{2}-2 x+1\right)=0 \Rightarrow x=1 \quad\left[y=\frac{1}{2}\right]
\]
\[
y-\frac{1}{6}=\text { substituted back } \Rightarrow-\frac{1}{6} \quad\left(x^{2}+6 x+9\right)=0 \Rightarrow x=-3 \quad\left[y=-\frac{1}{6}\right]
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1 A1 } \\
\text { M1 A1 }
\end{gathered}
\] \\
\hline 5 \& \begin{tabular}{l}
(i) (a) \\
(b) \\
(ii)
\end{tabular} \& \& \begin{tabular}{l}
B1 \\
B1 \\
M1 M1 \\
M1 A1 \\
M1 A1
\end{tabular} \\
\hline 6 \& (i)

(ii)

(iii) \& \begin{tabular}{l}
Possible orders are $1,2,3,4,6 \& 12$

By Lagrange's Theorem, the order of an element divides the order of the group (since the order of an element \equiv the order of the subgroup generated by that element)

E.g. $y=x y x \Rightarrow y \cdot x^{2} y=x y x \cdot x^{2} y$

by (3)
$$
\begin{aligned}
&=x y \cdot x^{3} \cdot y=x y \cdot y^{2} \cdot y \\
&= x \cdot y^{4}= \\
&=x \cdot\left(y^{2}\right)^{2} \\
&=x \cdot\left(x^{3}\right)^{2}=x \cdot e \quad \text { by (1) }
\end{aligned}
$$

[by (2)]

2 M's for first, correct uses of 2 different conditions; the \mathbf{A} for the $3^{\text {rd }}$ condition used to clinch the result.

Proving G not abelian: [e.g. by $x y x=y$ but $\left.x^{2} \neq e\right] \Rightarrow G$ not cyclic OR establishing a contradiction

 \&

B1

B1

M1

M1

A1

B1 B1
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 7 \& (i)

(ii) \& | $\cos 4 \theta+\mathrm{i} \sin 4 \theta=(c+\mathrm{i} s)^{4}$ |
| :--- |
| Use of de Moivre's Theorem $=c^{4}+4 c^{3}$. is $+6 c^{2} . \mathrm{i}^{2} s^{2}+4 c . \mathrm{i}^{3} s^{3}+\mathrm{i}^{4} s^{4} \quad$ Binomial expansion attempted $\cos 4 \theta=c^{4}-6 c^{2} s^{2}+s^{4}$ and $\sin 4 \theta=4 c^{3} s-4 c s^{3}$ |
| Equating Re \& Im parts $\tan 4 \theta=\frac{\sin 4 \theta}{\cos 4 \theta}=\frac{4 c^{3} s-4 c s^{3}}{c^{4}-6 c^{2} s^{2}+s^{4}}$ |
| Dividing throughout by c^{4} to get $\frac{4 t-4 t^{3}}{1-6 t^{2}+t^{4}}$ legitimately $\begin{aligned} & t=\frac{1}{5} \Rightarrow \tan 4 \theta=\frac{120}{119} \\ & \tan \left(\frac{1}{4} \pi+\tan ^{-1} \frac{1}{239}\right)=\frac{1+\frac{1}{239}}{1-\frac{1}{239}}=\frac{120}{119} \end{aligned}$ |
| Noting that this is $\tan \left(4 \tan ^{-1} \frac{1}{5}\right)$ so that $4 \tan ^{-1} \frac{1}{5}=\frac{1}{4} \pi+\tan ^{-1} \frac{1}{239}$ | \& M1

M1
M1
M1
A1
B1
M1 A1
A1

\hline 8 \& | (i) |
| :--- |
| (ii) |
| (iii) |
| (iv) | \& | Substituting $x=1, \mathrm{f}(1)=2$ and $\mathrm{f}^{\prime}(1)=3$ into $(*) \Rightarrow \mathrm{f}^{\prime \prime}(1)=5$ $\left\{x^{2} \mathrm{f}^{\prime \prime \prime}(x)+2 x \mathrm{f}^{\prime \prime}(x)\right\}+\left\{(2 x-1) \mathrm{f}^{\prime \prime}(x)+2 \mathrm{f}^{\prime}(x)\right\}-2 \mathrm{f}^{\prime}(x)=3 \mathrm{e}^{x-1}$ |
| :--- |
| Product Rule used twice; at least one bracket correct |
| Substituting $x=1, \mathrm{f}^{\prime}(1)=3$ and $\mathrm{f}^{\prime \prime}(1)=5$ into this $\Rightarrow \mathrm{f}^{\prime \prime \prime}(1)=-12$ ft their $\mathrm{f}^{\prime \prime}(1)$ $\mathrm{f}(x)=\mathrm{f}(1)+\mathrm{f}^{\prime}(1)(x-1)+\frac{1}{2} \mathrm{f}^{\prime \prime}(1)(x-1)^{2}+\frac{1}{6} \mathrm{f}^{\prime \prime \prime}(1)(x-1)^{3}+\ldots$ |
| Use of the Taylor series $=2+3(x-1)+\frac{5}{2}(x-1)^{2}-2(x-1)^{3}+\ldots 1^{\text {st }} \text { two terms CAO; }$ $2^{\text {nd }} \text { two terms ft (i) } \mathcal{\&} \text { (ii)'s answers }$ |
| Substituting $x=1.1 \Rightarrow \mathrm{f}(1.1) \approx 2.323$ to 3d.p. CAO | \& | M1 A1 |
| :--- |
| M1 |
| A1 |
| M1 A1 |
| M1 |
| A1 A1 |
| M1 A1 |

\hline 9 \& (i) \& | $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=3 x y^{4}$ is a Bernouilli (differential) equation $u=\frac{1}{y^{3}} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=-\frac{3}{y^{4}} \times \frac{\mathrm{d} y}{\mathrm{~d} x}$ |
| :--- |
| Then $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=3 x y^{4}$ becomes $-\frac{3}{y^{4}} \times \frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{3}{y^{3}}=-9 x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}-3 u=-9 x \quad$ AG | \& B1

M1 A1

\hline
\end{tabular}

	(ii)		
		Method 1	
		IF is $\mathrm{e}^{-3 x}$	M1 A1
		$\Rightarrow u \mathrm{e}^{-3 x}=\int-9 x \mathrm{e}^{-3 x} \mathrm{~d} x$	M1
		$=3 x \mathrm{e}^{-3 x}-\int 3 \mathrm{e}^{-3 x} \mathrm{~d} x \quad \text { Use of "parts" }$	M1
		$=(3 x+1) \mathrm{e}^{-3 x}+C$	A1
		General solution is $u=3 x+1+C \mathrm{e}^{3 x} \quad \mathbf{f t}$	B1
		$\Rightarrow y^{3}=\frac{1}{3 x+1+C \mathrm{e}^{3 x}}$	B1
		Using $x=0, y=\frac{1}{2}$ to find C $C=7 \text { or } y^{3}=\frac{1}{3 x+1+7 \mathrm{e}^{3 x}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
		Method 2	
		Auxiliary equation $m-3=0 \Rightarrow u_{C}=A \mathrm{e}^{3 x}$ is the complementary function	M1 A1
		For particular integral try $u_{P}=a x+b, u_{P}^{\prime}=a$	M1
		Substituting $u_{P}=a x+b$ and $u_{P}{ }^{\prime}=a$ into the d.e. and comparing terms	M1
		$a-3 a x-3 b=-9 x \Rightarrow a=3, b=1 \quad$ i.e. $u_{P}=3 x+1$	A1
		General solution is $u=3 x+1 A \mathrm{e}^{3 x}$ ft particular integral + complementary function provided particular integral has no arbitrary constants and complementary function has one	B1
		$\Rightarrow y^{3}=\frac{1}{3 x+1+A \mathbf{e}^{3 x}} \quad \mathbf{f t}$	B1
		Using $x=0, y=\frac{1}{2}$ to find A $A=7 \text { or } y^{3}=\frac{1}{3 x+1+7 \mathrm{e}^{3 x}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
10	(i)	Substituting $\left(\begin{array}{c}1+3 \lambda \\ -3+4 \lambda \\ 2+6 \lambda\end{array}\right)$ into plane equation; i.e. $\left(\begin{array}{c}1+3 \lambda \\ -3+4 \lambda \\ 2+6 \lambda\end{array}\right) \bullet\left(\begin{array}{c}2 \\ -6 \\ 3\end{array}\right)=k$	M1
		OR any point on line (since "given")	
		$k=2+6 \lambda+18-24 \lambda+6+18 \lambda=26$	A1

(ii)	Working with vector $\left(\begin{array}{c}10+2 m \\ 2-6 m \\ 3 m-43\end{array}\right)$.	B1
(iii)	Substituting into the plane equation: $\left(\begin{array}{c}10+2 m \\ 2+6 m \\ 3 m-43\end{array}\right) \bullet\left(\begin{array}{c}2 \\ -6 \\ 3\end{array}\right)=k$	M1
	Solving a linear equation in $m: 20+4 m-12+36 m+9 m-129=26$	M1
	$m=3 \Rightarrow Q=(16,-16,-34)$	A1
	Shortest distance is $\left.\|m\|\left(\begin{array}{c}2 \\ -6 \\ 3\end{array}\right) \right\rvert\,=21$ or $P Q=\sqrt{6^{2}+18^{2}+9^{2}}=21$	A1
	Finding 3 points in the plane: e.g. $A(1,-3,2), B(4,1,8), C(10,2,-43)$	M1
	Then 2 vectors in (// to) plane: e.g. $\overrightarrow{A B}=\left(\begin{array}{l}3 \\ 4 \\ 6\end{array}\right), \overrightarrow{A C}=\left(\begin{array}{c}9 \\ 5 \\ -45\end{array}\right), \overrightarrow{B C}=\left(\begin{array}{c}6 \\ 1 \\ -51\end{array}\right)$	M1
	OR B1 B1 for any two vectors in the plane	
	Vector product of any two of these to get normal to plane: $\left(\begin{array}{c}10 \\ -9 \\ 1\end{array}\right)$ (any non-zero multiple)	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$\begin{aligned} & d=\left(\begin{array}{c} 10 \\ -9 \\ 1 \end{array}\right) \cdot(\text { any position vector })=\left(\begin{array}{c} 10 \\ -9 \\ 1 \end{array}\right) \cdot\left(\begin{array}{c} 1 \\ -3 \\ 2 \end{array}\right) \text { e.g. }=39 \\ & \Rightarrow 10 x-9 y+z=39 \mathrm{CAO}(\mathrm{aef}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	ALTERNATE SOLUTION	
	$a x+b y+c z=d \text { contains }\left(\begin{array}{c} 1+3 \lambda \\ -3+4 \lambda \\ 2+6 \lambda \end{array}\right) \text { and }\left(\begin{array}{c} 10 \\ 2 \\ -43 \end{array}\right)$	
	... so $a+3 a \lambda+4 b \lambda-3 b+2 c+6 c \lambda=d \quad$ and $\quad 10 a+2 b-43 c=d$	M1 B1
	Then $a-3 b+2 c=d$ and $3 a+4 b+6 c=0(\lambda$ terms $) \quad$ i.e. equating terms	M1
	Eliminating (e.g.) c from ${ }^{\text {st }}$ two equations $\Rightarrow 9 a+10 b=0$	M1
	Choosing $a=10, b=-9 \Rightarrow c=1$ and $d=39$ i.e. $10 x-9 y+z=39$ CAO	M1 A1

