MARK SCHEME for the May/June 2014 series

9795 FURTHER MATHEMATICS

9795/01 Paper 1 (Further Pure Mathematics),

 maximum raw mark 120This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

1 (i) $S=N^{2}+(N+1)^{2}+(N+2)^{2}+\ldots+(2 N-2)^{2}+(2 N-1)^{2}+(2 N)^{2}$
B1 [1]
(ii) $=\sum_{r=1}^{2 N} r^{2}-\sum_{r=1}^{N-1} r^{2}$
$=\frac{2 N}{6}(2 N+1)(4 N+1)-\frac{(N-1)}{6}(N)(2 N-1)$
$=\frac{N}{6}\left(16 N^{2}+12 N+2-\left[2 N^{2}-3 N+1\right]\right)=\frac{N}{6}\left(14 N^{2}+15 N+1\right)$
$=\frac{N}{6}(N+1)(14 N+1)$

ALTERNATIVE

$$
\begin{aligned}
S & =\sum_{r=0}^{N}\left(N^{2}+2 N r+r^{2}\right) \quad \text { Splitting into three parts } \\
& =(N+1) N^{2}+2 N \cdot \frac{N}{2}(N+1)+\frac{N}{6}(N+1)(2 N+1)
\end{aligned}
$$

B1 M1 Use of both these standard results
$=\frac{(N+1)}{6}\left(6 N^{2}+6 N^{2}+2 N^{2}+N\right)$
$=\frac{N}{6}(N+1)(14 N+1)$

A1

$\mathbf{A B}=\left[\begin{array}{ccc}1 & 2 & 1 \\ t & 1 & -t \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{ccc}t-2 & 0 & 5 \\ 12 & -2 & -6 \\ 3 t & 4 & 7\end{array}\right]=\left[\begin{array}{ccc}4 t+22 & 0 & 0 \\ 12-2 t-2 t^{2} & -2-4 t & -2 t-6 \\ 6 t+18 & 0 & 10\end{array}\right]$
M1 good effort; A1 all correct

Give M0 (A0) B1 B1 for BA found $(k, t \checkmark)$ or k, t found from 1 or 2 elements of $\mathbf{A B}$ only Give M1 (A0) B1 B1 for k, t found from most (but not all) elements of AB

$$
=10 \text { I when } t=-3 \quad \text { Allow these correct from most of } \mathbf{A B} \text { correct }
$$

(ii)

$$
\left[\begin{array}{ccc}
-5 & 0 & 5 \\
12 & -2 & -6 \\
-9 & 4 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
8 \\
12 \\
22
\end{array}\right]
$$

(iii)
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{10}\left[\begin{array}{ccc}1 & 2 & 1 \\ -3 & 1 & 3 \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{c}8 \\ 12 \\ 22\end{array}\right]$
$x=5.4, y=5.4, z=7$
B1 SC for correct x, y, z without inverse matrix method seen

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9795	01

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9795	01

5 (i) (ii)	$\begin{aligned} & \begin{array}{l} \begin{array}{l} y=\frac{12(x+1)}{(x-2)^{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x} \end{array}=12\left\{\frac{(x-2)^{2}-(x+1) \cdot 2(x-2)}{(x-2)^{4}}\right\} \\ \\ =0 \text { when } x-2=2 x+2 \text { i.e. } x=-4, y=-1 \end{array} \\ & \text { VA } x=2 \quad \text { HA } y=0 \quad \text { Stated or clearly shown on diagram } \\ & \text { Intercepts }(0,3) \text { and }(-1,0) \quad \text { Stated or clearly shown on diagram } \end{aligned}$	M1 A1
		A1 A1 [4]
		B1 B1
		B1 B1
	Basic shape correct	B1
	All details correct	B1 [6]
	(Allow $\mathbf{f t}$ on min. point provided it doesn't ruin overall shape or position)	
6	$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2}{x} y=\frac{4 \ln x}{x} \quad$ I.F. is $\exp \left\{\int \frac{2}{x} \mathrm{~d} x\right\}=x^{2}$	M1
	$x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y=4 x \ln x \Rightarrow x^{2} y=$ LHS correct	B1
	RHS $=4 \ln x \cdot \frac{1}{2} x^{2}-\int \frac{1}{2} x^{2} \cdot \frac{4}{x} \mathrm{~d} x \quad$ M1 Use of parts, right way round	M1
	$=2 x^{2} \ln x-x^{2}+C \quad$ Ignore the " $+C$ " here	A1
	$y=2 \ln x-1+\frac{C}{x^{2}}$	A1
	Use of $x=1, y=1$ to find $C \quad C=2$ i.e. $y=2 \ln x-1+\frac{2}{x^{2}}$ (any correct form)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9795	01

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9795	01

9 (i) All non-identity elements pair up with their inverses.
If $|G|=2 k$, then there are $2 k-1$ elements to pair up
\Rightarrow at least one element "pairs up" with itself.
(ii) $a b=(a b)^{-1}=b^{-1} a^{-1}=b a$

ALT. $(a b)^{2}=i \Rightarrow a b a b=i \Rightarrow a b a=b \quad$ (post-multiplying by $b=b^{-1}$)

$$
\Rightarrow \quad a b=b a \quad \text { (post-multiplying by } a=a^{-1} \text {) }
$$

(iii) E.g. Let $x=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)$ and $y=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)$, each of order 2

Then $x y=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2 \\ 2 & 3 & 1\end{array}\right)$ (transforming) OR $\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2 \\ 3 & 1 & 2\end{array}\right)$ (transposing) of order 3
(iv) (a) H closed since $x(y x)=x(x y)=x^{2} y=y$
and $y(x y)=y(y x)=y^{2} x=x$ using result of (ii)
[Associativity follows from that of G]
The identity is in H and each element has its own inverse (itself) in H
Hence H a subgroup of G
However, Lagrange's Theorem states that $o(H) \mid o(G)$ and $4 \nmid 4 n+2$ contradicting the assumption that G can contain all self-inverse elements.

Page 7	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9795	01

10 (i) $\cos 6 \theta=\operatorname{Re}(c+\mathrm{i} s)^{6}$
Use of Binomial expansion for $(c+i s)^{6} \quad$ Re terms only required

$$
=c^{6}-15 c^{4} s^{2}+15 c^{2} s^{4}-s^{6}
$$

Use of $s^{2}=1-c^{2}$ (and powers)
$\Rightarrow \cos 6 \theta=c^{6}-15 c^{4}\left(1-c^{2}\right)+15 c^{2}\left(1-2 c^{2}+c^{4}\right)-\left(1-3 c^{2}+3 c^{4}-c^{6}\right)$
$\Rightarrow 2 \cos 6 \theta=64 c^{6}-96 c^{4}+36 c^{2}-2 \quad$ Answer Given
(ii) Setting $x=2 \cos \theta$ in given eqn.

$$
\begin{aligned}
& \Rightarrow(2 c)^{6}-6(2 c)^{4}+9(2 c)^{2}-3=2 \cos 6 \theta-1=0 \\
& \cos 6 \theta=\frac{1}{2} \Rightarrow 6 \theta=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{11 \pi}{3}, \frac{13 \pi}{3}, \frac{17 \pi}{3} \\
& \Rightarrow \theta=\frac{\pi}{18}, \frac{5 \pi}{18}, \frac{7 \pi}{18}, \frac{11 \pi}{18}, \frac{13 \pi}{18}, \frac{17 \pi}{18}
\end{aligned}
$$

$x=2 \cos \theta$ for each $\theta \quad$ Must be 6 distinct θ 's
OR $x= \pm 2 \cos \theta$ for $\theta=\frac{\pi}{18}, \frac{5 \pi}{18}, \frac{7 \pi}{18}$
(iii) Product of SIX roots $=-3=\left(-4 \cos ^{2} \frac{\pi}{18}\right)\left(-4 \cos ^{2} \frac{5 \pi}{18}\right)\left(-4 \cos ^{2} \frac{7 \pi}{18}\right)$

Signs justified; e.g. via $\cos (\pi-\theta)=-\cos \theta$
$\Rightarrow \cos \frac{\pi}{18} \cos \frac{5 \pi}{18} \cos \frac{7 \pi}{18}=\frac{\sqrt{3}}{8} \quad[+\mathrm{ve} \sqrt{ }$ taken as read, since all angles acute]

11 (i) $(r, \theta)=(1,0)$
Condone (r, θ) given as (θ, r) throughout
(ii) $\mathrm{e}^{\sin \theta} \mathrm{min} . /$ max. when $\sin \theta \min . / \max$.
giving min. at $(r, \theta)=\left(\mathrm{e}^{-1},-\frac{\pi}{2}\right)$ and max. at $(r, \theta)=\left(\mathrm{e}, \frac{\pi}{2}\right)$
(iii)

Symmetry in y-axis

Closed curve

Shape essentially correct don't penalise kinks. ft from (ii) where suitable
(iv) $A=\int_{0}^{0.3} \frac{1}{2} \mathrm{e}^{2 \sin \theta} \mathrm{~d} \theta$

Use of formula; correct
$\mathrm{f}(\theta)=\mathrm{e}^{2 \sin \theta} \Rightarrow \mathrm{f}^{\prime}(\theta)=\mathrm{e}^{2 \sin \theta} \cdot 2 \cos \theta \quad$ and $\quad \mathrm{f}^{\prime \prime}(\theta)=\mathrm{e}^{2 \sin \theta}\left(4 \cos ^{2} \theta-2 \sin \theta\right)$
$\mathrm{f}(0)=1, \mathrm{f}^{\prime}(0)=2, \mathrm{f}^{\prime \prime}(0)=4$

$$
\Rightarrow \mathrm{f}(\theta)=1+2 \theta+2 \theta^{2} \ldots
$$

$A=\frac{1}{2}\left[\theta+\theta^{2}+\frac{2}{3} \theta^{3}\right]_{0}^{0.3}=0.204$ or $\frac{51}{250} \quad 1^{\text {st }} \mathrm{A} 1$ for correct $\mathrm{f}^{\text {n. }}$. of a 3-term quadratic
Accept 0.205 from correct \int^{n}. of quartic $\left(1+2 \theta+2 \theta^{2}+\theta^{3}+\frac{1}{4} \theta^{4}\right)$
NB Correct answer is $0.20498 \ldots$
ALTERNATIVES (middle 5 marks)
Alt. I Ignoring terms in θ^{3} and above, $\sin \theta \approx \theta \ldots$

$$
\begin{aligned}
& \mathrm{e}^{\sin \theta} \approx 1+\theta+\frac{1}{2} \theta^{2} \ldots \\
& \Rightarrow\left(\mathrm{e}^{\sin \theta}\right)^{2} \approx 1+2 \theta+\theta^{2} \ldots+2 \times \frac{1}{2} \theta^{2} \ldots=1+2 \theta+2 \theta^{2} \ldots
\end{aligned}
$$

Alt. II $\mathrm{f}(\theta)=\mathrm{e}^{\sin \theta} \ldots \mathrm{f}^{\prime}(\theta)=\cos \theta \mathrm{e}^{\sin \theta}$ and $\mathrm{f}^{\prime \prime}(\theta)=\left(\cos ^{2} \theta-\sin \theta\right) \mathrm{e}^{\sin \theta}$
$f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=1$
$\Rightarrow \mathrm{f}(\theta)=1+\theta+\frac{1}{2} \theta^{2}+\ldots \quad$ Maclaurin attempt at as a function of θ
$\Rightarrow[\mathrm{f}(\theta)]^{2}=1+2 \theta+2 \theta^{2}+\ldots \quad$ Ignore higher power terms

12 (i) (a) $\tanh x=\frac{\sinh x}{\cosh x}=\frac{\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{\frac{1}{2}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)} \times \frac{\mathrm{e}^{x}}{\mathrm{e}^{x}}=\frac{\mathrm{e}^{2 x}-1}{\mathrm{e}^{2 x}+1}$
Answer Given so MUST justify final answer
(b) $\tanh x=\frac{\mathrm{e}^{2 x}-1}{\mathrm{e}^{2 x}+1}=\frac{1}{k} \Rightarrow k \mathrm{e}^{2 x}-k=\mathrm{e}^{2 x}+1 \quad$ Equated for k

$$
\Rightarrow(k-1) \mathrm{e}^{2 x}=k+1 \Rightarrow x=\frac{1}{2} \ln \left(\frac{k+1}{k-1}\right) \quad \text { Answer Given }
$$

$$
\sinh 2 x=\frac{1}{2}\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)=\frac{1}{2}\left(\frac{k+1}{k-1}-\frac{k-1}{k+1}\right)
$$

$$
\begin{aligned}
& \text { or via } t=\tanh \left(\frac{1}{2}-\text { "angle" }\right) \text { identity } \\
&= \frac{1}{2}\left(\frac{\left(k^{2}+2 k+1\right)-\left(k^{2}-2 k+1\right)}{k^{2}-1}\right)=\frac{2 k}{k^{2}-1}
\end{aligned}
$$

(ii) $y=\frac{1}{2} \ln (\tanh x) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \cdot \frac{1}{\tanh x} \cdot \sec ^{2} x$

$$
=\frac{1}{\sinh 2 x} \quad \text { Here or later (or equivalent) }
$$

$1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\frac{1}{\sinh ^{2} 2 x}=\frac{\cosh ^{2} 2 x}{\sinh ^{2} 2 x}$
M0 if no progress towards an integrable form
$L=\int_{\alpha}^{\beta} \frac{\cosh 2 x}{\sinh 2 x} \mathrm{~d} x=\left[\frac{1}{2} \ln (\sinh 2 x)\right]_{\alpha}^{\beta}$
For the integration

NB Alternative approaches lead to $\frac{1}{2} \int(\tanh x+\operatorname{coth} x) \mathrm{d} x=\frac{1}{2}[\ln (\cosh x)+\ln (\sinh x)]$
For $\beta, k=2 \Rightarrow \sinh 2 x=\frac{4}{3}$; for $\alpha, k=3 \Rightarrow \sinh 2 x=\frac{3}{4}$
$\Rightarrow L=\frac{1}{2} \ln \frac{4}{3}-\frac{1}{2} \ln \frac{3}{4}=\ln \frac{4}{3}$

13 (i) If w is a root with $|z|=1$, then $w=\cos \theta+i \sin \theta$
Modelling
Then $\cos 2 \theta+i \sin 2 \theta-2(\cos \theta-i \sin \theta)+k i=0 \quad$ Use of de Moivre's theorem

$$
\cos 2 \theta-2 \cos \theta=0
$$

Considering real parts

$$
|c| \leq 1 \Rightarrow \cos \theta=\frac{1}{2}(1-\sqrt{3})
$$

$$
\sin \theta= \pm \sqrt{1-\frac{1}{4}(4-2 \sqrt{3})}= \pm \sqrt{\frac{1}{2} \sqrt{3}}
$$

$$
k=-2 \sin \theta-2 \sin \theta \cos \theta \text { or }-2 \sin \theta(1+\cos \theta)
$$

Considering imaginary parts

$$
=\mp 2 \times \sqrt{\frac{1}{2} \sqrt{3}} \times \frac{1}{2}(3-\sqrt{3})=(3-\sqrt{3}) \sqrt{\frac{1}{2} \sqrt{3}}
$$

Answer Given

ALTERNATIVE I

Let $w=a+\mathrm{i} b$ where $a^{2}+b^{2}=1$
Then $w^{2}=a^{2}-b^{2}+\mathrm{i} .2 a b$ and $\frac{1}{w}=\frac{a-\mathrm{i} b}{a^{2}+b^{2}}=a-\mathrm{i} b \quad($ since $|w|=1)$
giving $\left(a^{2}-2 a-b^{2}\right)+\mathrm{i}(2 a b+2 b+k)=0$

$$
\Rightarrow a^{2}-2 a-b^{2}=0 \text { and } 2 a b+2 b+k=0
$$

Using $b^{2}=1-a^{2}$ in Real part $=0$ and solving a quadratic in $a: 2 a^{2}-2 a-1=0$

$$
\Rightarrow a=\frac{1}{2}(1 \pm \sqrt{3})
$$

However, $|a|<1 \Rightarrow a=\frac{1}{2}(1-\sqrt{3}) \quad$ or similar argument from $a^{2}=1-\frac{\sqrt{3}}{2}$
Thus $b^{2}=\frac{\sqrt{3}}{2}$ and $b= \pm \sqrt{\frac{\sqrt{3}}{2}}$
Substituting for a and b in Im part $=0$

$$
\begin{aligned}
\Rightarrow k=-2 b(a+1) & =\mp 2 \cdot \sqrt{\frac{1}{2} \sqrt{3}} \cdot \frac{1}{2}(3-\sqrt{3}) \\
& =(3-\sqrt{3}) \sqrt{\frac{1}{2} \sqrt{3}} \quad \text { (since told } k>0 \text {) Answer Given }
\end{aligned}
$$

Page 11	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2014	9795	01

(ii) If $w^{3}+k i w-2=0$ has roots α, β, γ, then $\alpha \beta \gamma=2$

Then $|\alpha|=1 \Rightarrow|\beta \gamma|=2$ and at least one of β, γ has magnitude >1

