CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2013 series

9795 FURTHER MATHEMATICS

9795/01

Paper 1 (Further Pure Mathematics), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme	Syllabus	Paper
		Pre-U – May/June 2013	9795	01
1		$x^2 - 6x + 12 \equiv (x - 3)^2 + 3$		B1
		$\int_{2}^{6} \frac{1}{\left(\sqrt{3}\right)^{2} + (x-3)^{2}} dx = \left[\frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{x-3}{\sqrt{3}}\right)\right]_{2}^{6} \qquad M1 \tan^{-1}$	1st A1 $\left(\frac{x-3}{\sqrt{3}}\right)$	M1 A1
		$= \frac{1}{\sqrt{3}} \left(\frac{\pi}{3} - \left(-\frac{\pi}{6} \right) \right) = \frac{\pi}{2\sqrt{3}}$		A1
				[4]
2		$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{1}{5}x^5 + \dots \text{ from the Formula}$	ıla Book	
		$\ln(1-x) = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 - \frac{1}{5}x^5 - \dots$		B1
		$\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\left\{\ln(1+x) - \ln(1-x)\right\}$		M1
		$= \frac{1}{2} \times 2\left\{x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots\right\} = \tanh^{-1}x \text{from the}$	e Formula Book	A1
		$ln(1 + x)$ valid for $-1 < x \le 1$ and so $ln(1 - x)$ is valid for -1 so LHS valid for $-1 < x < 1$, which matches the range for		B1
				[4]
3	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\left(x^2 - 4\right)1 - (x + 1).2x}{\left(x^2 - 4\right)^2}$ Use of quotient rule; correct uns	simplified	M1 A1
		$= -\frac{(x^2 + 2x + 4)}{(x^2 - 4)^2} = -\frac{(x + 1)^2 + 3}{(x^2 - 4)^2}$ or clear explanation th	is is < 0	E1
		ALT: $y = \frac{\frac{3}{4}}{x-2} + \frac{\frac{1}{4}}{x+2} \implies \frac{dy}{dx} = \frac{-\frac{3}{4}}{(x-2)^2} + \frac{-\frac{1}{4}}{(x+2)^2} < 0$		
				[3]

	Page 3	Mark Scheme	Syllabus	Paper
		Pre-U – May/June 2013	9795	01
3	(ii)	Asymptotes $y = 0$ Stated or clear from graph $x = \pm 2$ Stated or clear from graphCrossing-points $(0, -\frac{1}{4})$ and $(-1, 0)$ Noted or clearly shows	own on graph	B1 B1 B1 B1
		3 regi	ions	M1
		All co	orrect (incl. no TP	5) A1
				[6]
4	(i)	$\mathbf{d_1} \times \mathbf{d_2}$ attempted = $14\mathbf{i} + 35\mathbf{j} - 21\mathbf{k}$ (ALT: Use of 2 scalar prods. & attempt to get 2 components in te	erms of the 3 rd)	M1 A1
				[2]
	(ii)	Sh. Dist. = $ (\mathbf{b} - \mathbf{a}) \cdot \hat{\mathbf{n}} $ $(\mathbf{b} - \mathbf{a}) = \pm (\mathbf{i} + 3\mathbf{j} - 7\mathbf{k})$ $\hat{\mathbf{n}} = \frac{1}{\sqrt{38}}$	(2i+5j-3k) ft	M1 B1 B1
		$= \frac{1}{\sqrt{38}} (2\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}) \bullet (\mathbf{i} + 3\mathbf{j} - 7\mathbf{k}) = \frac{1}{\sqrt{38}} 2 + 15 + 21 \mathbf{f} \mathbf{i}$	t scalar prod.	B1
		$\sqrt{38}$ cao	=	A1
		ALT: Solving $\begin{pmatrix} 2\\4\\3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\4 \end{pmatrix} - \begin{pmatrix} 1\\1\\10 \end{pmatrix} - \mu \begin{pmatrix} 9\\-3\\1 \end{pmatrix} = k \begin{pmatrix} 2\\5\\-3 \end{pmatrix}$ to find close	est points on line,	
		(3, 6, 7) from $\lambda = 1$ and (1, 1, 10) from $\mu = 0$ giving $k = 1$ and	Sh.D. = $\sqrt{38}$	
				[5]

	Page 4	Mark Scheme Syllabus	Paper
		Pre-U – May/June 2013 9795	01
5	(i)	$z^{n} - \frac{1}{z^{n}} = (\cos n\theta + i.\sin n\theta) - (\cos[-n\theta] - i.\sin[-n\theta])$ De Moivre's Thm. used for at least z^{n}	M1
		$= \cos n\theta + i.\sin n\theta - (\cos n\theta - i.\sin n\theta) = 2i \sin n\theta$ Given answer obtained from 2 correct uses of de Moivre's Thm. and correct trig.	A1 [2]
	(ii)	$\left(z - \frac{1}{z}\right)^5 = 32i\sin^5\theta$	M1
		$= z^{5} - 5z^{3} + 10z - \frac{10}{z} + \frac{5}{z^{3}} - \frac{1}{z^{5}}$ Use of binomial expansion	M1
		$= \left(z^{5} - \frac{1}{z^{5}}\right) - 5\left(z^{3} - \frac{1}{z^{3}}\right) + 10\left(z - \frac{1}{z}\right) $ Pairing up terms	M1
		= $2i \sin 5\theta - 10i \sin 3\theta + 20i \sin \theta$ Use of (i)'s result (×3)	M1
		$\Rightarrow \sin^5\theta = \frac{1}{16}\sin 5\theta - \frac{5}{16}\sin 3\theta + \frac{5}{8}\sin\theta$	A1
			[5]
6	(i)	$r = 1 + r \sin \theta \implies \sqrt{x^2 + y^2} = 1 + y$	M1 M1
		Squaring and cancelling: $x^2 + y^2 = y^2 + 2y + 1 \implies y = \frac{1}{2}(x^2 - 1)$	A1
			[3]
	(ii)	Parabola All correct: Crossing-points at $(\pm 1, 0)$ and $(0, -\frac{1}{2})$	M1 A1
			[2]
	(iii)	$\int_{\pi}^{2\pi} \frac{1}{(1-\sin\theta)^2} \mathrm{d}\theta = 2 \times \int_{\pi}^{2\pi} \frac{1}{2} r^2 \mathrm{d}\theta \qquad \text{Recognition that this is related to area}$	M1
		$= -2 \int_{-1}^{1} \frac{1}{2} (x^{2} - 1) dx$ Matching up with parabola-related region	M1
		$= -\left[\frac{x^3}{3} - x\right]_{-1}^{1} = \frac{4}{3}$ Ignore -ve answer	A1
			[3]

	Page 5		Mark Scheme	Syllabus	Paper
			Pre-U – May/June 2013	9795	01
7	(i)	x^3 -	$+y^{3} = (x+y)^{3} - 3xy(x+y)$ or equivalent		M1 A1
	(ii)	(a)	$\alpha + \beta$ (= 3) and $\alpha\beta$ (= $\frac{8}{9}$) substd. into (i)'s result ft \Rightarrow	$\alpha^3 + \beta^3 = 19$	[2] M1 A1
		(b)	$9t^2 - 27t + 8 = 0 \implies (3t - 1)(3t - 8) = 0 \implies \alpha, \beta = \frac{1}{3}, \frac{8}{3}$	<u>.</u>	[2] M1 A1
		1	Then $\alpha^3 + \beta^3 = 19 = \left(\frac{1}{3}\right)^3 + \left(\frac{8}{3}\right)^3$ Explicit statement requi	red	A1
					[3]
8	(i)	(a) resu	$x \in G \Rightarrow \exists x^{-1} \in G$ and pre-multiplying by this (or x in the solution of the second secon		B1 B1
		perr	Since each xg_i is distinct, and there are <i>n</i> of them, the set nutation of the elements of <i>G</i> OR mention that it is just a rehence contains a permutation of the elements of <i>G</i>		
	(ii)	Mul	Itiply all elements together: $xg_1 xg_2 xg_3 \dots xg_n = g_1 g_2 g_3$.	$\dots g_n$	[1] E1
		(Sin	ace G is abelian) $\Rightarrow x^n (g_1 g_2 g_3 \dots g_n) = (g_1 g_2 g_3 \dots g_n)$	$g_3 \ldots g_n$)	E 1
		Sind Pre/	ce $g_1 g_2 g_3 \dots g_n$ is an element of <i>G</i> , it has an inverse; 'post-mult ^g . by this inverse then gives $x^n = e$		E 1
	(iii)	(a)	Elements may have an order which divides into (is a factor	of) <i>n</i>	[3] B1
		(b)	Because the change of the order of multns. in $g.g_1 g.g_2 g.g_3 \dots g.g_n = g^n.(g_1 g_2 g_3 \dots g_n)$		[1] B1
			is only valid in an abelian group		[1]

	Page 6	Mark Scheme	Syllabus	Paper
		Pre-U – May/June 2013	9795	01
9		Reflection in $y = x \tan \frac{1}{8}\pi$: $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$	Allow $\cos\left(\frac{1}{4}\pi\right)$'s, etc.	B1
		Shear // y-axis, mapping (1, 0) to (1, 2): $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$		B1
		Rotation through $\frac{1}{4}\pi$ clockwise about <i>O</i> : $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$		B1
		Shear // x-axis, mapping (0, 1) to (-2, 1): $\begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$		B1
		Multiplying them together in this order (from right-to-left) =	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	M1 A1
		Reflection in $y = x$		M1 A1
		NB 1 Multiplying the matrices in the reverse order scores matrix B1 for correct $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and M1 for "Reflection" and	A1 for "in <i>x</i> -axis"	[8]
		NB 2 Incorrect final matrices automatically lose the last 2 m	arks	
10	(a)	$y = k x \cos x \implies \frac{dy}{dx} = -k x \sin x + k \cos x$ and $\frac{d^2 y}{dx^2} = -k$. Attempt at 1st and 2nd derivatives		M1
		Substituting both of these into the given DE		M1
		$-kx\cos x - 2k\sin x + kx\cos x = 4\sin x$		
		Comparing terms to evaluate k : $k = -2$		M1 A1
		Aux. Eqn. $m^2 + 1 = 0$ solved $\Rightarrow m = \pm i$		M1 A1
		Comp. Fn. is $y_C = A \cos x + B \sin x$ ft Accept $y_C = A$	$e^{ix} + Be^{-ix}$ here	B 1
		G. S. is $y = A \cos x + B \sin x - 2x \cos x$ ft provided y_P has has 2	no arb. consts. & y_C	B1
		Do not accept final answer involving complex num	bers	
				[8]

	Page 7	Mark Scheme	Syllabus	Paper
		Pre-U – May/June 2013	9795	01
10	(b)(i)	$x = 1, y = 2 \& \frac{dy}{dx} = 1 \implies \frac{d^2 y}{dx^2} \bigg _{x = 1} = -20$		B1
		Differentiating $\frac{d^2 y}{dx^2} + y^2 \frac{dy}{dx} + xy = 5x - 19$		M1
		Use of <i>Product Rule</i> and implicit differentiation (at least once) $\Rightarrow \frac{d^3 y}{dx^3} + \left\{ y^2 \frac{d^2 y}{dx^2} + 2y \left(\frac{dy}{dx}\right)^2 \right\} + \left\{ x \frac{dy}{dx} + y \right\} = 5 \Rightarrow \frac{d^2 y}{dx^2}$	= 78	M1 A1 A1
		FT "78" from "-20" and also from $\frac{dy}{dx}$ instead of $\left(\frac{dy}{dx}\right)^2$ (both =	$\lambda = 1$	A1 [6]
	(ii)	Use of $y = y(1) + (x - 1).y'(1) + \frac{1}{2}(x - 1)^2.y''(1) + \frac{1}{6}(x - 1)^3.y''(1)$	y'''(1) +	M1
		$= 2 + (x - 1) - 10(x - 1)^{2} + 13(x - 1)^{3} + \dots $ ft		A1
		Substituting $x = 1.1$ into this series $\Rightarrow y(1.1) \approx 2.013$ ft		M1 A1
				[4]
11	(i)	$(p+iq)^2 = (p^2 - q^2) + i.2pq$		B1
		Comparing real and imaginary parts: $p^2 - q^2 = 63$ and $2pq = 63$	-16	M1
		Solving simultaneously: $p = \pm 8, q = \mp 1$ i.e. $\pm (8-i)^2$	= 63 – 16i	M1 A1
				[4]
	(ii)	(a) Use of $z^3 - (\alpha + \beta + \gamma)z^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)z - (\alpha\beta\gamma) = 0$)	M1
		A = 4 - 4i, B = 21 - 16i, C = 84 i.e. $f(z) = z^3 - (4 - 4i)z^2 + 6$	(21 - 16i)z - 84 = 0	A1 A1 A1
				[4]
		(b) Differentiating to get $f'(z) = 3z^2 - 8(1 - i)z + (21 - 16i)$ O $3z^2 - 2Az + B = 0$ ft	R	B1
		Solving $z = \frac{8 - 8i \pm \sqrt{64(1 - 2i - 1) - 12(21 - 16i)}}{6}$ using the	e quadratic formula	M1
		$z = \frac{1}{3} \left(4 - 4i \pm \sqrt{16i - 63} \right) = \frac{1}{3} \left(4 - 4i \pm i\sqrt{63 - 16i} \right)$	ī)	A1
		Use of (i)'s result (on the right thing): $z = \frac{1}{3} (4 - 4i \pm i(8 - i))$)) = $\frac{5}{3} + \frac{4}{3}i$ or $1 - 4i$	M1 A1
				[5]

	Page 8	Mark Scheme	Syllabus	Paper
		Pre-U – May/June 2013	9795	01
T	I			
12	(i)	$y'(x) = (2x + 1) e^{2x}$, $y''(x) = (4x + 4) e^{2x}$,		B1 B1
		$y'(x) = (2x + 1) e^{2x},$ $y''(x) = (4x + 4) e^{2x},$ $y'''(x) = (8x + 12) e^{2x},$ $y^{(4)}(x) = (16x + 32) e^{2x}$		B1 B1
				[4]
	(ii)	Conjecture $\frac{d^n y}{dx^n} = (2^n x + n.2^{n-1}) e^{2x}$ One mark each:	coefft. of <i>x</i> , constant	B1 B1
	(1)	dx^n (C the map f) is the second secon		
				[2]
	(iii)	Diffferentiating their conjectured expression (must be linear ×	e^{2x})	M1
		$\frac{d^{n+1}y}{dx^{n+1}} = 2 \times (2^n x + n \cdot 2^{n-1}) e^{2x} + 2^n \times e^{2x}$	FT max 1/2	A1 A1
		$= (2^{n+1}x + (n+1).2^{(n+1)-1}) e^{2x} $ Show	n of correct form	A1
		Usual induction round-up/explanation of proof, including clear $(n+1)^{\text{th}}$ formula is in the right form.	r demonstration that	E1
				[5]
13	(i)	(a) $1 - \operatorname{sech}^2 \theta = \frac{\left(e^{\theta} + e^{-\theta}\right)^2 - 4}{\left(e^{\theta} + e^{-\theta}\right)^2} = \frac{\left(e^{\theta} - e^{-\theta}\right)^2}{\left(e^{\theta} + e^{-\theta}\right)^2} = \tanh^2 \theta \operatorname{she}^2 \theta$	own legitimately	M1 A1
		(b) $\frac{\mathrm{d}}{\mathrm{d}\theta}(\tanh\theta) = \frac{(\mathrm{e}^{\theta} + \mathrm{e}^{-\theta})(\mathrm{e}^{\theta} + \mathrm{e}^{-\theta}) - (\mathrm{e}^{\theta} - \mathrm{e}^{-\theta})(\mathrm{e}^{\theta} - \mathrm{e}^{-\theta})}{(\mathrm{e}^{\theta} + \mathrm{e}^{-\theta})^2} =$	$\operatorname{sech}^2 \theta$ from (a)	M1 A1
				[4]
	(ii)	(a) $I_n = \int_0^\alpha \tanh^{2n-2} \theta \cdot \tanh^2 \theta \mathrm{d}\theta = \int_0^\alpha \tanh^{2n-2} \theta \left(1 - \mathrm{sech}^2 \theta\right) \mathrm{d}\theta$	9	M1 M1
		$= I_{n-1} - \left[\frac{\tanh^{2n-1}\theta}{2n-1}\right]_0^{\alpha} \implies I_{n-1} - I_n = \frac{(\tanh\alpha)}{2n-1}$	$\frac{e^{2n-1}}{1}$	M1 A1
		ALT: $I_{n-1} - I_n = \int_0^\alpha \tanh^{2n-2} \theta (1 - \tanh^2 \theta) d\theta = \int_0^\alpha \tanh^{2n-2} \theta d\theta$	$e^{-2}\theta$. sech ² θ d θ	M1 M1
		$= \left[\frac{\tanh^{2n-1}\theta}{2n-1}\right]_0^\alpha = \frac{(\tanh\alpha)^{2n-1}}{2n-1}$		M1 A1
				[4]

Page 9		Mark Scheme	Syllabus	Paper
		Pre-U – May/June 2013	9795	01
13	(ii)	(b) $I_0 = \int_0^\alpha 1 \mathrm{d}\theta = \alpha = \frac{1}{2}\ln 3$		B1
		(c) $(I_{n-1} - I_n) + (I_{n-2} - I_{n-1}) + (I_{n-3} - I_{n-2}) + \dots + (I_{n-3} - I_{n-2}) + \dots + (I_{n-3} - I_{n-2}) + \dots + (I_{n-3} - I_{n-3}) + \dots $	$(I_2 - I_3) + (I_1 - I_2) + (I_0 - I_1)$ Use of the method of difference	[1] M1
		$= \sum_{r=1}^{n} \frac{(\tanh \alpha)^{2r-1}}{2r-1} = \sum_{r=1}^{n} \frac{\left(\frac{1}{2}\right)^{2r-1}}{2r-1} \text{ when } \alpha = \frac{1}{2r-1}$	5 55	A1
		$\Rightarrow I_0 - I_n = \sum_{r=1}^n \frac{\left(\frac{1}{2}\right)^{2r-1}}{2r-1}$ Cancellation of	f terms in the summation	M1
		$\Rightarrow I_n = \frac{1}{2} \ln 3 - \sum_{r=1}^n \frac{\left(\frac{1}{2}\right)^{2r-1}}{2r-1} $ AG		A1
		Ignoring "method of differences", but opting for max 3/4 M0 M1 A1 A1	a direct iterative approach scores	
		As $n \to \infty$, $I_n \to 0$ since $ \tanh < 1$		E1
		$\Rightarrow \frac{1}{2} \ln 3 = \sum_{r=1}^{n} \frac{\left(\frac{1}{2}\right)^{2r-1}}{2r-1} = \frac{1}{2} + \frac{\left(\frac{1}{2}\right)^{3}}{3} + \frac{\left(\frac{1}{2}\right)^{5}}{5} + \frac{\left(\frac{1}{2}\right)^{7}}{7}$	·+	M1
		$\Rightarrow \ln 3 = 1 + \frac{1}{3.4} + \frac{1}{5.4^2} + \frac{1}{7.4^3} + \dots = \sum_{r=0}^{\infty} \frac{1}{7.4^r}$	$\frac{1}{2r+1)4^r}$	A1
		Ignoring "method of differences", but opting for max 3/4 M0 M1 A1 A1	a direct iterative approach scores	[7]