

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9795 FURTHER MATHEMATICS

9795/02

Paper 2 (Further Application of Mathematics), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Pa	aper	
			Pre-U – May/June 2012	9795		02	
1	(i)	$M_X(t)$	$= \int_0^\infty e^{tx} k e^{-kx} dx \text{(Limits Required)}$		M1		
		$=k\int_0^\infty$	$e^{(t-k)x}dx = k \int_0^\infty e^{-(k-t)x}dx$ (Limits not required)		M1		
		$=\frac{-k}{k-t}$	$\left[e^{-(k-t)x}\right]_{0}^{\infty} = \frac{k}{k-t} (AG)$		A1	[3]	
	(ii)	$M_X'(t)$	$= \frac{k}{(k-t)^2} \Longrightarrow E(X) = M_X'(0) = \frac{1}{k}$		M1A1		
		$M_X''(t)$	$= \frac{2k}{(k-t)^3} \Longrightarrow E(X^2) = M_X''(0) = \frac{2}{k^2}$		M1A1		
		(A1 ft i	f double sign error when differentiating twice, but CA0)		A1	[5]	
		Altern	atively:				
		$M_X(t)$	$=\left(1-\frac{t}{k}\right)^{-1}=1+\frac{t}{k}+\frac{t^{2}}{k^{2}}+\ldots=1+\frac{1}{k}t+\frac{2}{k^{2}}t^{2}+\ldots$		M1A1		
		E(X) =	$=\frac{1}{k}$		A1		
		$E(X^2)$	$= \frac{2}{k^2} \Longrightarrow \operatorname{Var}(X) = \frac{2}{k^2} - \left(\frac{1}{k}\right)^2 = \frac{1}{k^2}$		M1A1	[5]	[8]
2	(i)	$E(a\overline{X})$	$(+ h\overline{Y}) = \mu$		M1		
-	(1)	$E(a\overline{V})$	$(b\overline{Y}) = a\overline{F}(\overline{Y}) + b\overline{F}(\overline{Y})$		M1		
		Е(ил	+bI) - dE(X) + bE(I)				
		$\Rightarrow a\mu$	$+ 30\mu = \mu \Longrightarrow u + 3v = 1$		AI	[3]	
	(ii)	Var(a	$\overline{X} + b\overline{Y}) = a^2 \operatorname{Var}(\overline{X}) + b^2 \operatorname{Var}(\overline{Y}) = a^2 \frac{\sigma^2}{n} + 4b^2 \frac{\sigma^2}{n}$		M1		
		$=\frac{\sigma^2}{n}$	$(a^{2} + 4b^{2}) = \frac{\sigma^{2}}{n}(1 - 6b + 9b^{2} + 4b^{2}) = \frac{\sigma^{2}}{n}(1 - 6b + 13b^{2})$	²) (AG)	M1A1	[3]	
	(iii)	$\frac{\mathrm{d}}{\mathrm{d}b}\mathrm{Va}$	$r(a\overline{X} + b\overline{Y}) = -6 + 26b = 0 \Longrightarrow b = \frac{3}{13}$		M1A1		
		\Rightarrow Va	$\mathbf{r}_{\min}\left(a\overline{X}+b\overline{Y}\right) = \frac{\sigma^2}{n} \left(1-6\times\frac{3}{13}+13\times\frac{9}{13}\right) = \frac{4\sigma^2}{13n}$		A1	[3]	[9]

Page 3		Mark Scheme: Teachers' version	Syllabus	Pape	r
		Pre-U – May/June 2012	9795	02	
3 (i)	$\overline{x} = 1.6$	75		B1	
	99% co	onfidence limits are $1.675 \pm 2.576 \times \frac{0.1}{\sqrt{6}}$ (ft on wrong mean)		M1A1√ [≜]	
	99% co	onfidence interval is (1.57, 1.78) (AWRT)		A1	
				[4]	
(ii)	s = 0.0	0.9215 or s = 0.1009		R1	
(1)	v = 5 =	$\Rightarrow t_5 (0.99) = 4.032$		B1	
	99% co	onfidence limits are $1.675 \pm 4.032 \times \frac{0.1009}{5}$ or 1.675 ± 4.0	$32 \times \frac{0.09215}{5}$	M1A1	
	000/	$\sqrt{6}$	$\sqrt{5}$	A 1	
	99% co	onfidence interval is (1.51, 1.84) (AWR1)		AI [5]	
	~ 1				
(iii)	Sensib inside	le comment referring to the fact that 1.8 is outside the 1st int 2nd (ft on their CI's)	erval but	BI√ [1]	[10]
	mside			[1]	[10]
4 (i)	P(X =	$(r) = e^{-\lambda} \frac{\lambda^r}{\lambda}$ (may be implied by next line)		B1	
. (-)	1 (11	r!		21	
	$G_{y}(t)$	$p = \sum_{r=1}^{\infty} p_r t^r = \sum_{r=1}^{\infty} e^{-\lambda} \frac{(\lambda t)^r}{(\lambda t)^r} = e^{-\lambda} e^{\lambda t} = e^{\lambda (t-1)} $ (AG)		M1A1	
	A ()	$\frac{1}{0}$ $r!$		[3]	
(ii)	G	$(t) = e^{\lambda(t-1)} e^{\mu(t-1)} = e^{(\lambda+\mu)(t-1)} \implies (Y+Y) \sim Po(\lambda+\mu)$		M141	
	\mathbf{U}_{X+Y}	$(1) - c$ $(1) - c$ $(1) + 10(n + \mu)$		[2]	
(;;;)		$(1 \text{ or } [1, 2] \text{ or } [2, 2]) = 0.2221 \times 0.1226 \pm 0.2247 \times 0.2128 \pm 0.2247$	0 2510 ×	P2 10	
(111)	0.2565	$\{ 0, [1, 5] 0, [2, 2] \} = 0.2251 \times 0.1550 \pm 0.5547 \times 0.2158 \pm 0.$	0.2310 ^	D2,1,0	
	$P(X \le 2)$	$(X+Y=4) = \frac{0.1657}{1000}$		M1A1√	
	1 (11_2	0.1954 0.848 (AWDT)		A 1	
	(S.C. I	f no marks earned in (iii), award B1 for $P(X \le 2) = 0.1657$ if	seen.)	AI [5]	[10]
	~		,		
5 (i)	np = 10	$00 \times \frac{1}{5} = 20$ and $npq = 20 \times \frac{4}{5} = 16$		B1	
	Standa	rdisation in either (a) or (b)		M1	
	1 /	5 20			
(a)) $z = \frac{14}{2}$	$\frac{4.5 - 20}{4} = -1.375 \implies P(\ge 15) = 0.915 \text{(AWFW [0.915, -1.5])}$	0.916])	A1√A1	
	(ft on y	4 variance of 20)			
	Ì	, ,			
(b)) $z = \frac{12}{2}$	$\frac{2.5-20}{1} = -1.875 \implies P(<12) = 1 - 0.9696 = 0.0304$		A1A1	
	(AWF)	4 W [0 0303 0 0304])		[6]	
	(11)11				
(ii)	mean = $7 - 1$	= variance = $36 \implies S.D. = 6$		B1 B1	
	2 = 1.0	1)		וע	
	$\left(N + \right)$	$\left(\frac{1}{2}\right) - 36$	$\begin{pmatrix} 1 \end{pmatrix}$		
	<u> </u>	$\frac{-7}{6}$ > 1.645 (Allow working with equality, but must b	$\operatorname{be}\left(N+\frac{1}{2}\right)$.)	M1A1	
	$\Rightarrow N >$	45.37 \therefore least $N = 46$		A1	
				[5]	[11]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper		
			Pre-U – May/June 2012	9795		02	
6	(i)	Above	r-axis between $(0, 0)$ to $(3, 0)$		B 1		
v	(1)	Correct	t concavity. (Do not condone parabolas.)		B1		
		001100			21	[2]	
		4	$\begin{bmatrix} 3 \\ 2 & 3 & 4 \end{bmatrix}$ (1 in its maximum 1)				
	(11)	$\mu = \frac{1}{27}$	$\int_{0} (5x - x) dx$ (Limits required.)		MI		
		1	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}^3$				
		=	$\left 3\frac{x}{x} - \frac{x}{x} \right = 1.8$		A1A1		
		27	$4 5]_0$		111111		
		$\mathcal{O}(\mathcal{A})$	4 ((2 2))				
		$\Gamma(x) =$	$=\frac{1}{27}(6x-3x^{2})=0$		M1A1		
		$\Rightarrow x =$	$0,2$ \therefore Mode = 2		Δ1		
					111	[6]	
						[~]	
	(iii)	Mean 1	ess than mode in (ii) matches negative skew in sketch.		B1		
						[1]	
	(iv)	P(X -	$ -\mu < \sigma$) = $\frac{4}{-1} \int_{-\infty}^{2.4} (3x^2 - x^3) dx$ (Limits required.)		M1		
	(1)		$27 J_{1.2}$ (11) $J_{1.2}$ (11) J				
			$4 \begin{bmatrix} x & x^4 \end{bmatrix}^{2.4}$				
			$=\frac{1}{27} \left x^2 - \frac{1}{4} \right = 0.64$		A1A1		
						[3]	[12]
			75	2			
7	(i)	Tractiv	be force = Resistance at maximum speed $\Rightarrow \frac{75}{10} = 10k \Rightarrow k = 10k$	$\frac{3}{4}$. (AG)	B1		
			10	4		[1]	
	(ii)	F = ma	$y \Rightarrow \frac{75}{2} - \frac{3}{2}v = 90\frac{dv}{dv} \Rightarrow \frac{25}{2} - \frac{1}{2}v = 30\frac{dv}{dv}$ (AG)	(3 terms	M1A1		
	()		v 4 dt v 4 dt			[2]	
		req. for	· M1)				
			7 100				
	(iii)	$\int dt dt =$	$\int \frac{120v}{120v^2} dv$		M1		
		JO	$J_{3} = 100 - v^{2}$				
		t = -	$-60 \int \left(\frac{-2v}{1-2v} dv = \left -60 \ln \left 100 - v^2 \right \right ^7 $ (Limits not required)		M1A1		
			$J_3 100 - v^2$		171111111		
		=	$-60\ln 51 + 60\ln 91 = 60\ln \left(\frac{91}{2}\right)$ (= 34.7) seconds	S.	N/1 A 1		
			(51)		MIAI	[5]	[&]
						[2]	լօյ

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2012	9795	02

Г

0				
8				
		$x^2 = 3^2 + 8^2 - 2 \times 3 \times 8 \cos 135^\circ \Longrightarrow x = 10.341$	MIAI	
		$\frac{\sin\theta}{2} = \frac{\sin 135^\circ}{2} \Rightarrow \theta = 11.837^\circ$	M1A1	
	Distances 3	3 δ (θ as in distance diagram)		
	135°			
	8 x			
	θ			
		1000 (450 + 11 0250) 102 1(20		
		$180^{\circ} - (45^{\circ} + 11.837^{\circ}) = 123.163^{\circ}$ sin α sin 123.163°	B1	
	Velocities	$\frac{\sin \alpha}{40} = \frac{\sin (23.103)}{60} \Rightarrow \alpha = 33.923^{\circ}$	M1A1	
	Λ	(α as in velocities diagram.)		
	60 40			
	α			
	123.163° Course is	$: (45^{\circ} + 11.837^{\circ}) - 33.923^{\circ} = 22.914^{\circ}$	A 1	
		Course is 025 (Bearing notation not required.)	A1 [8]	1 [8]
			L	
8	Alternative solution:			
	Equate easterly and northerly dis	splacements at time t hours, where θ is required		
	bearing:	.r		
	Attempt at either equation		M1	
	Attempt at entire equation $60 \cos \theta t = 4\sqrt{2} + 40t$		Al	
	$60 \cos \theta i = 4\sqrt{2} + 40i$		A1	
	$60\sin\theta t = 4\sqrt{2} + 3$			
	Attempt to eliminate <i>t</i> .		MI	
	-			
	Obtain e.g. $(4\sqrt{2}+3)\cos(4\sqrt{2})$	$\theta - 4\sqrt{2\sin\theta} = \frac{2}{2}(4\sqrt{2} + 3)$	A1	
	9 (5 (acc)	3		
	or $\delta.000\cos\theta$ –	$3.030\sin\theta = 3.7712$		
	Rearrange to obtain $\cos(\theta + 33)$	(.16) = 0.5580	A1	
	$S_{2} = 1 + 22 + 16 = 56 + 076$	0-22.0		
	Solve: $\theta + 33.10 = 30.0/0 \Rightarrow$ Course is 0.02° (Rearing	$\sigma = 22.9$	M1	
	Course is 025 (Dearing	notation not required.)	А1 [8]	1 [8]
				1 [6]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Pa	per	
			Pre-U – May/June 2012	9795	0	2	
9	(i)	$T\cos\theta$	P = mg (Must be seen to score in part (i).)		B1		
		$\theta = 90^{\circ}$	$p \Rightarrow mg = 0$ $\therefore AP$ can never be horizontal.		B1		
		$\therefore 0 < c$	$\cos \theta < 1 \implies T \left(= \frac{mg}{c} \right) > mg$		B1		
			$(\cos\theta)$		[[3]	
	(ii)	T air 0	$l = 0^{-2} + T = l^{-2}$		M1A1		
	(11)	$I \sin \theta$	$= mi \sin \theta \varpi \implies 1 = mi \varpi$		[[2]	
		-					
	(iii)	$T\frac{h}{-}=$	$T\frac{h}{l} = mg \Longrightarrow T = \frac{mgl}{h}$		B1		
		l					
		$\Rightarrow ml$	$\varpi^2 = \frac{mgl}{l}$		B1		
		2	h		D1		
		$\Rightarrow \omega^{-}$	h = g.		BI		
		h = 0.5	$\sigma \Rightarrow \sigma = \sqrt{20} = 4.47$ Angular speed is 4.47 rad/s.		B1		
		(11	4.42 from $\alpha = 0.8$				
		(Allow	4.43 from $g = 9.8.$		ſ	41	[9]
					L	1	[2]
10	(i)	Let <i>u</i> d	enote speed of sphere Q before impact, v_1 and v_2 the speeds	of spheres Q			
		and P ,	respectively, after impact and α the angle between Q 's initial and the line of centres	al direction of			
		After in	mpact, if moving perpendicularly, Q moves perpendicular to	o line of			
		centres	and P moves along line of centres. (Stated or implied.)		B1		
		CIM	-2		M1 A 1		
		NEL: e	$mu \cos \alpha = 0 + 3mv_2$ of $mu_x - 3mv$		A1		
		1,22,0	1				
		$\therefore e = -$	3		Al	51	
					l		
	(ii)	$v_1 = u_2$	$\sin \alpha$ and $v_0 = \frac{1}{2} \mu \cos \alpha$		B1 (bot)	n)	
		v] u :	3		D1 (000	.1)	
		Loss in	I KE is				
		$\frac{1}{2}mu^2 - \frac{1}{2}mu^2\sin^2\alpha - \frac{1}{2}.3m\frac{u^2\cos^2\alpha}{1}$		M1A1			
		2 2 2 9					
		$=\frac{1}{12}n$	$=\frac{1}{12}mu^2$ (Or remaining KE is 5/6 of initial KE etc.)		A1		
		12 But cos	$s^2 \alpha + \sin^2 \alpha = 1$ (used)		M1		
		Durvon	$\sqrt{3}$.,		
		⇒=	$\Rightarrow \sin^2 \alpha = \frac{3}{4} \qquad \Rightarrow \sin \alpha = \frac{\sqrt{3}}{2} \Rightarrow \alpha = 60^{\circ}$		M1A1		14.03
			τ 2		[7	[12]

	Page 7		Mark Scheme: Teachers' version Pre-U – Mav/June 2012	Syllabus 9795	Paper 02		
L			110-0 - May/oune 2012	5155	I	52]
11	(i)	$T = \frac{6\pi}{2}$	$\frac{mg\left(\sqrt{9a^2+x^2}-a\right)}{a}$		M1A1		
		Let θ b	e the angle between each string and line of motion of particle	e.	M1		
		$m\ddot{x} = -$	$-2T\cos\theta = -\frac{12mg}{a}\left(\sqrt{9a^{2} + x^{2}} - a\right) \times \frac{x}{\sqrt{9a^{2} + x^{2}}}$		A1A1		
		$\Rightarrow \ddot{x} =$	$= -\frac{12gx}{a} \left(1 - \frac{a}{\sqrt{9a^2 + x^2}} \right)$		A1	[6]	
	(ii)	$\therefore \ddot{x} \approx$	$\left(-12g+4g\right)\frac{x}{a} = -\frac{8g}{a}x$		M1A1		
		Which	is SHM of period $2\pi \sqrt{\frac{a}{8g}}$ or $\pi \sqrt{\frac{a}{2g}}$.		A1	[3]	
	(iii)	$v_{\rm max} =$	$\overline{\omega}a \Rightarrow \frac{ga}{200} = \frac{8g}{a}A^2 \Rightarrow A^2 = \frac{a^2}{1600} \Rightarrow A = \frac{a}{40}$		M1A1		
		where .	<i>A</i> is the amplitude.			[2]	[11]
12	(i)	<i>x</i> = 20	$\cos \alpha t$ $y = 20 \sin \alpha t - 5t^2$ (Allow g or 9.8 here for B mark).		B1B1		
		<i>y</i> = 20	$0\sin\alpha \cdot \frac{x}{20\cos\alpha} - 5\left(\frac{x}{20\cos\alpha}\right)^2 = x\tan\alpha - \frac{x^2}{80}(1 + \tan^2)$	α) (AG)	M1A1	[4]	
	(ii)	$x^2 \tan^2$ Real ro	$\alpha - 80x \tan \alpha + x^2 + 80y = 0$ (Can be implied by what follow nots $\Rightarrow 6400x^2 - 4x^2(x^2 + 80y) \ge 0$	zs.)	B1 M1A1		
		⇒160	$0 - x^2 - 80y \ge 0 \Rightarrow y \le 20 - \frac{x^2}{80}, (x \ne 0).$		A1	[4]	
	(iii)	x = R	$\cos\beta$ and $y = R\sin\beta \Rightarrow y = x\tan\beta$				
		In y = .	$20 - \frac{x^2}{80} \Rightarrow R\sin\beta = 20 - \frac{R^2(1 - \sin^2\beta)}{80}$		M1A1		
		$R^{2}(1 -$	$-\sin^2\beta$ + 80 $R\sin\beta$ - 1600 = 0 \Rightarrow ($R[1-\sin\beta]$ + 40)($R[1-\alpha]$	$+\sin\beta]-40)$	M1		
		$\Rightarrow R =$	$= \frac{40}{1 + \sin \beta} \text{(up)} \text{or} \frac{-40}{1 - \sin \beta} \text{(down)}$		A1	[4]	
12	(iii)	Altern $x^2 + 80$ $\Rightarrow x =$	ative solution: $\tan \beta x - 1600 = 0$ $-40 \tan \beta \pm 40 \sec \beta$		B1 B1		
		$\Rightarrow R_{up}$	$=\frac{-40\sin\beta + 40}{\cos^{2}\beta} = \frac{40(1-\sin\beta)}{1-\sin^{2}\beta} = \frac{40}{1+\sin\beta}$		B1		
		\Rightarrow R _{do}	$_{\rm wn} = \left \frac{-40\sin\beta - 40}{\cos^2\beta} \right = \frac{40(1+\sin\beta)}{1-\sin^2\beta} = \frac{40}{1+\sin\beta}$		B1		
						[4]	[12]