MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9795 FURTHER MATHEMATICS
 9795/01 Paper 1 (Further Pure Mathematics), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9795	01

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& \& \[
\begin{aligned}
\& \sum_{r=1}^{n}\left(r^{2}-r+1\right)=\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r+\sum_{r=1}^{n} 1 \quad \text { Splitting summation and use of given results } \\
\& =\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)+n \\
\& =\frac{1}{3} n\left(n^{2}+2\right) \quad \text { legitimately } \Sigma r^{2} ; 2^{\text {nd }} \text { for } \Sigma r \& \Sigma 1=n
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { B1 B1 } \\
\text { A1 }
\end{gathered}
\] \& [4] \\
\hline 2 \& \& \[
\begin{array}{rlrl}
A \& =k \int(\sin \theta+\cos \theta)^{2} \mathrm{~d} \theta \& \& \text { including squaring attempt; ignore limits and } k \neq \frac{1}{2} \\
\& =\frac{1}{2} \int(1+\sin 2 \theta) \mathrm{d} \theta \& \begin{array}{l}
\text { for use of the double-angle formula } \\
\text { OR integration of } \sin \theta \cos \theta \text { as } k \sin ^{2} \theta \text { or } k \cos ^{2} \theta
\end{array} \\
\& =\frac{1}{2}\left[\theta-\frac{1}{2} \cos 2 \theta\right]_{0}^{\pi / 2} \& \begin{array}{l}
\text { ft (constants only) in the integration; }
\end{array} \\
\& =\frac{1}{4} \pi+\frac{1}{2} \& \& \text { MUST be } 2 \text { separate terms }
\end{array}
\] \& \begin{tabular}{l}
M1 \\
B1 \\
A1 \\
A1
\end{tabular} \& [4] \\
\hline 3 \& (i)

(ii) \& \begin{tabular}{l}
$$
\begin{aligned}
& y=(\sinh x)^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2}(\sinh x)^{-\frac{1}{2}} \cdot \cosh x \quad \text { OR } \quad y^{2}=\sinh x \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\cosh x \\
& =\frac{\sqrt{1+y^{4}}}{2 y} \\
& \int \frac{2 y}{\sqrt{1+y^{4}}} \mathrm{~d} y=\int 1 . \mathrm{d} x \quad \text { By Sep}{ }^{g} . \text { Vars. in (i)'s answer } \\
& \Rightarrow x=\int \frac{2 y}{\sqrt{1+y^{4}}} \mathrm{~d} y
\end{aligned}
$$

But $x=\sinh ^{-1} y^{2}$ so $\int \frac{2 t}{\sqrt{1+t^{4}}} \mathrm{~d} x=\sinh ^{-1}\left(t^{2}\right)+C \quad$ condone missing " $+C^{\prime}$ "

ALT. 1 Set $t^{2}=\sinh \theta, 2 t \mathrm{~d} t=\cosh \theta \mathrm{d} \theta \quad$ M1 Full substn.
$$
\int \frac{2 t}{\sqrt{1+t^{4}}} \mathrm{~d} t=\int \frac{\cosh \theta}{\sqrt{1+\sinh ^{2} \theta}} \mathrm{~d} \theta \quad \mathbf{A} \mathbf{1}=\int 1 . \mathrm{d} \theta=\theta=\sinh ^{-1}\left(t^{2}\right)
$$

ALT. 2 Set $t^{2}=\tan \theta, 2 t \mathrm{~d} t=\sec ^{2} \theta \mathrm{~d} \theta \quad$ M1 Full substn.
$$
\begin{aligned}
\int \frac{2 t}{\sqrt{1+t^{4}}} \mathrm{~d} t & =\int \frac{\sec ^{2} \theta}{\sqrt{1+\tan ^{2} \theta}} \mathrm{~d} \theta \quad \mathbf{A} \mathbf{1}=\int \sec \theta \cdot \mathrm{d} \theta \\
& =\ln |\sec \theta+\tan \theta|=\ln \left|t^{2}+\sqrt{1+t^{4}}\right| \mathbf{A 1}
\end{aligned}
$$

 \&

M1 A1

A1

M1

A1

A1
\end{tabular} \& [3]

[3]

\hline
\end{tabular}

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9795	01

\begin{tabular}{|c|c|c|c|c|}
\hline 4 \& (i) \& \begin{tabular}{l}
\(y=\frac{x+1}{x^{2}+3} \Rightarrow y \cdot x^{2}-x+(3 y-1)=0 \quad\) Creating a quadratic in \(x\) \\
\(\begin{array}{ll}\text { For real } x, 1-4 y(3 y-1) \geq 0 \& \text { Considering the discriminant } \\ 12 y^{2}-4 y-1 \leq 0 \& \text { Creating a quadratic inequality } \\ \text { For real } x,(6 y+1)(2 y-1) \leq 0 \& \text { Factorising/solving a 3-term quadratic }\end{array}\)
\[
-\frac{1}{6} \leq y \leq \frac{1}{2} \quad \text { cso }
\] \\
NB lack of inequality earlier with unjustified correct answer loses only the \(3^{\text {rd }}\) M mark
\[
\begin{aligned}
\& y=\frac{1}{2} \text { substd. back } \Rightarrow \frac{1}{2}\left(x^{2}-2 x+1\right)=0 \Rightarrow x=1 \quad\left[y=\frac{1}{2}\right] \\
\& y-\frac{1}{6}=\text { substd. back } \Rightarrow-\frac{1}{6}\left(x^{2}+6 x+9\right)=0 \Rightarrow x=-3 \quad\left[y=-\frac{1}{6}\right]
\end{aligned}
\] \\
Allow alternative approach via calculus: \\
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-x^{2}-2 x+3}{\left(x^{2}+3\right)^{2}}\) M1 Solving quadratic to find 2 values of \(x\) M1 \\
Then A1 A1 each pair of correct \((x, y)\) coordinates
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
M1 \\
M1 \\
A1 \\
M1 A1 \\
M1 A1
\end{tabular} \& \([5]\)

$[4]$

\hline 5 \& (i)

(ii) \& \begin{tabular}{l}
(a) $\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$

(b) $\left(\begin{array}{cc}\cos \beta & \sin \beta \\ \sin \beta & -\cos \beta\end{array}\right)$

$\left(\begin{array}{cc}\cos \phi & \sin \phi \\ \sin \phi & -\cos \phi\end{array}\right)\left(\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)$ Multn. of 2 reflection matrices. Correct order.
$$
=\left(\begin{array}{ll}
\cos \phi \cos \theta+\sin \phi \sin \theta & \cos \phi \sin \theta-\sin \phi \cos \theta \\
\sin \phi \cos \theta-\cos \phi \sin \theta & \cos \phi \cos \theta+\sin \phi \sin \theta
\end{array}\right)
$$
$$
=\left(\begin{array}{cc}
\cos (\phi-\theta) & -\sin (\phi-\theta) \\
\sin (\phi-\theta) & \cos (\phi-\theta)
\end{array}\right)
$$

Use of the addition formulae; correctly done
$$
\ldots \text { giving a Rotation (about } O \text {) } \quad \text { through }(\phi-\theta) \text { acw } \quad[\text { or }(\theta-\phi) \mathrm{cw}]
$$

Those who get the initial matrices in the wrong order, can get $5 / 6$, losing only that M mark

 \&

B1

B1

M1 M1

M1 A1

M1 A1
\end{tabular} \& [2]

[6]

\hline
\end{tabular}

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9795	01

\begin{tabular}{|c|c|c|c|c|}
\hline 6 \& (i)
(ii)

(iii) \& \begin{tabular}{l}
Possible orders are $1,2,3,4,6 \& 12$

By Lagrange's Theorem, the order of an element divides the order of the group (since the order of an element \equiv the order of the subgroup generated by that element)

E.g. $y=x y x \Rightarrow y \cdot x^{2} y=x y x . x^{2} y$

by (3)
$$
\begin{align*}
=x y \cdot x^{3} \cdot y & =x y \cdot y^{2} \cdot y \\
=x \cdot y^{4} & =x \cdot\left(y^{2}\right)^{2} \tag{2}\\
& =x \cdot\left(x^{3}\right)^{2}=x \cdot e \quad \text { by (1) }
\end{align*}
$$

2 M's for first, correct uses of 2 different conditions; the \mathbf{A} for the $3^{\text {rd }}$ condition used to clinch the result.

SPECIAL CASE Allow $2 / 3$ for those who correctly argue the converse

Proving G not abelian: [e.g. by $x y x=y$ but $\left.x^{2} \neq e\right] \Rightarrow G$ not cyclic OR establishing a contradiction

 \&

B1

B1

M1

M1

A1

B1 B1
\end{tabular} \& [2]

[3]
[2]

\hline 7 \& (i)

(ii) \& | $\cos 4 \theta+\mathrm{i} \sin 4 \theta=(c+\mathrm{i} s)^{4}$ |
| :--- |
| Use of de Moivre's Theorem $=c^{4}+4 c^{3} . i s+6 c^{2} . i^{2} s^{2}+4 c . i^{3} s^{3}+\mathrm{i}^{4} s^{4} \quad$ Binomial expansion attempted $\cos 4 \theta=c^{4}-6 c^{2} s^{2}+s^{4}$ and $\sin 4 \theta=4 c^{3} s-4 c s^{3} \quad$ Equating Re \& Im parts $\tan 4 \theta=\frac{\sin 4 \theta}{\cos 4 \theta}=\frac{4 c^{3} s-4 c s^{3}}{c^{4}-6 c^{2} s^{2}+s^{4}}$ |
| Dividing throughout by c^{4} to get $\frac{4 t-4 t^{3}}{1-6 t^{2}+t^{4}}$ legitimately $\begin{aligned} & t=\frac{1}{5} \Rightarrow \tan 4 \theta=\frac{120}{119} \\ & \tan \left(\frac{1}{4} \pi+\tan ^{-1} \frac{1}{239}\right)=\frac{1+\frac{1}{239}}{1-\frac{1}{239}}=\frac{120}{119} \end{aligned}$ |
| Noting that this is $\tan \left(4 \tan ^{-1} \frac{1}{5}\right)$ so that $4 \tan ^{-1} \frac{1}{5}=\frac{1}{4} \pi+\tan ^{-1} \frac{1}{239}$ | \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\text { M1 A1 } \\
\text { A1 }
\end{gathered}
$$
\] \& [5]

[4]

\hline
\end{tabular}

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9795	01

\begin{tabular}{|c|c|c|c|c|}
\hline 8 \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
Subst \({ }^{\mathrm{g}} . x=1, \mathrm{f}(1)=2\) and \(\mathrm{f}^{\prime}(1)=3\) into \((*) \Rightarrow \mathrm{f}^{\prime \prime}(1)=5\)
\[
\left\{x^{2} \mathrm{f}^{\prime \prime \prime}(x)+2 x \mathrm{f}^{\prime \prime}(x)\right\}+\left\{(2 x-1) \mathrm{f}^{\prime \prime}(x)+2 \mathrm{f}^{\prime}(x)\right\}-2 \mathrm{f}^{\prime}(x)=3 \mathrm{e}^{x-1}
\] \\
Product Rule used twice; at least one bracket correct \\
Subst \({ }^{\mathrm{g}} . x=1, \mathrm{f}^{\prime}(1)=3\) and \(\mathrm{f}^{\prime \prime}(1)=5\) into this \(\Rightarrow \mathrm{f}^{\prime \prime \prime}(1)=-12\) ft their \(\mathrm{f}^{\prime \prime}(1)\)
\[
\mathrm{f}(x)=\mathrm{f}(1)+\mathrm{f}^{\prime}(1)(x-1)+\frac{1}{2} \mathrm{f}^{\prime \prime}(1)(x-1)^{2}+\frac{1}{6} \mathrm{f}^{\prime \prime \prime}(1)(x-1)^{3}+\ldots
\] \\
Use of the Taylor series \\
\(=2+3(x-1)+\frac{5}{2}(x-1)^{2}-2(x-1)^{3}+\ldots 1^{\text {st }}\) two terms cao; \\
\(2^{\text {nd }}\) two terms ft (i) \(\mathcal{\&}\) (ii)'s answers \\
Subst \({ }^{\mathrm{g}} . x=1.1 \Rightarrow \mathrm{f}(1.1) \approx 2.323\) to 3d.p. cso (i.e. exactly this answer)
\end{tabular} \& \begin{tabular}{l}
M1 A1 \\
M1 \\
A1 \\
M1 A1 \\
M1 \\
A1 A1 \\
M1 A1
\end{tabular} \& [2] \\
\hline 9 \& (i)

(ii) \& | $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=3 x y^{4}$ is a Bernouilli (differential) equation $u=\frac{1}{y^{3}} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=-\frac{3}{y^{4}} \times \frac{\mathrm{d} y}{\mathrm{~d} x}$ |
| :--- |
| Then $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=3 x y^{4}$ becomes $-\frac{3}{y^{4}} \times \frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{3}{y^{3}}=-9 x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}-3 u=-9 x \quad$ AG |
| Method 1 |
| IF is $\mathrm{e}^{-3 x}$ $\begin{aligned} \Rightarrow u \mathrm{e}^{-3 x} & =\int-9 x \mathrm{e}^{-3 x} \mathrm{~d} x \\ & =3 x \mathrm{e}^{-3 x}-\int 3 \mathrm{e}^{-3 x} \mathrm{~d} x \\ & =(3 x+1) \mathrm{e}^{-3 x}+C \end{aligned}$ |
| Gen. Soln. is $u=3 x+1+C \mathrm{e}^{3 x}$ |
| ft $\Rightarrow y^{3}=\frac{1}{3 x+1+C \mathrm{e}^{3 x}}$ |
| ft |
| Using $x=0, y=\frac{1}{2}$ to find C $C=7 \text { or } y^{3}=\frac{1}{3 x+1+7 \mathrm{e}^{3 x}}$ | \& \[

$$
\begin{gathered}
\text { B1 } \\
\text { M1 A1 } \\
\text { M1 A1 } \\
\text { M1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
$$
\] \& [3]

\hline
\end{tabular}

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9795	01

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Method 2 \\
Aux. Eqn. \(m-3=0 \Rightarrow u_{C}=A \mathrm{e}^{3 x}\) is the Comp. Fn. \\
For Part. Intgl. try \(u_{P}=a x+b, u_{P}{ }^{\prime}=a\) \\
Subst \({ }^{\text {g }}\). \(u_{P}=a x+b\) and \(u_{P}{ }^{\prime}=a\) into the d.e. and comparing terms \\
\(a-3 a x-3 b=-9 x \Rightarrow a=3, b=1 \quad\) i.e. \(u_{P}=3 x+1\) \\
Gen. Soln. is \(u=3 x+1 A \mathrm{e}^{3 x}\) \\
ft PI + CF provided PI has no arbitrary constants and CF has one
\[
\begin{equation*}
\Rightarrow y^{3}=\frac{1}{3 x+1+A \mathrm{e}^{3 x}} \tag{ft}
\end{equation*}
\] \\
Using \(x=0, y=\frac{1}{2}\) to find \(A\)
\[
A=7 \text { or } y^{3}=\frac{1}{3 x+1+7 \mathrm{e}^{3 x}}
\]
\end{tabular} \& \begin{tabular}{l}
M1 A1 \\
M1 \\
M1 \\
A1 \\
B1 \\
B1 \\
M1 \\
A1
\end{tabular} \& [9] \\
\hline 10 \& (i) \& Subst \({ }^{\mathrm{s}}\). \(\left(\begin{array}{c}1+3 \lambda \\ -3+4 \lambda \\ 2+6 \lambda\end{array}\right)\) into plane equation; i.e. \(\left(\begin{array}{c}1+3 \lambda \\ -3+4 \lambda \\ 2+6 \lambda\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -6 \\ 3\end{array}\right)=k\) OR any point on line (since "given")
\[
k=2+6 \lambda+18-24 \lambda+6+18 \lambda=26
\] \& M1

A1 \&]

\hline \& (ii) \& | Working with vector $\left(\begin{array}{c}10+2 m \\ 2-6 m \\ 3 m-43\end{array}\right)$. |
| :--- |
| Subst ${ }^{\mathrm{t}}$. into the plane equation: $\left(\begin{array}{c}10+2 m \\ 2+6 m \\ 3 m-43\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -6 \\ 3\end{array}\right)=k$ | \& B1

M1 \&

\hline \& \& Solving a linear equation in $m: 20+4 m-12+36 m+9 m-129=26$

\[
m=3 \Rightarrow Q=(16,-16,-34)

\] \& | M1 |
| :--- |
| A1 | \&

\hline \& \& | Sh. Dist. is $\left.\|m\|\left(\begin{array}{c}2 \\ -6 \\ 3\end{array}\right) \right\rvert\,=21$ or $P Q=\sqrt{6^{2}+18^{2}+9^{2}}=21$ |
| :--- |
| Alternate methods that find only Sh. Dist. but not Q can score M1 A1 only | \& A1 \& [5]

\hline
\end{tabular}

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9795	01

(iii)			
	Finding 3 points in the plane: e.g. $A(1,-3,2), B(4,1,8), C(10,2,-43)$	M1	
	Then 2 vectors in (// to) plane: e.g. $\overrightarrow{A B}=\left(\begin{array}{l}3 \\ 4 \\ 6\end{array}\right), \overrightarrow{A C}=\left(\begin{array}{c}9 \\ 5 \\ -45\end{array}\right), \overrightarrow{B C}=\left(\begin{array}{c}6 \\ 1 \\ -51\end{array}\right)$	M1	
	OR B1 B1 for any two vectors in the plane		
	Vector product of any two of these to get normal to plane: $\left(\begin{array}{c}10 \\ -9 \\ 1\end{array}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	
	(any non-zero multiple)		
	$d=\left(\begin{array}{c} 10 \\ -9 \\ 1 \end{array}\right) \cdot(\text { any position vector })=\left(\begin{array}{c} 10 \\ -9 \\ 1 \end{array}\right) \cdot\left(\begin{array}{c} 1 \\ -3 \\ 2 \end{array}\right) \text { e.g. }=39$ $\Rightarrow 10 x-9 y+z=39$ cao (or any correct equivalent form)	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	[6]
	ALTERNATE SOLUTION		
	$a x+b y+c z=d$ contains $\left(\begin{array}{c}1+3 \lambda \\ -3+4 \lambda \\ 2+6 \lambda\end{array}\right)$ and $\left(\begin{array}{c}10 \\ 2 \\ -43\end{array}\right)$		
	... so $a+3 a \lambda+4 b \lambda-3 b+2 c+6 c \lambda=d \quad$ and $\quad 10 a+2 b-43 c=d$	M1 B1	
	Then $a-3 b+2 c=d \quad$ and $\quad 3 a+4 b+6 c=0(\lambda$ terms $) \quad$ i.e. equating terms	M1	
	Eliminating (e.g.) c from $1^{\text {st }}$ two eqns. $\Rightarrow 9 a+10 b=0$	M1	
	Choosing $a=10, b=-9 \Rightarrow c=1$ and $d=39$ i.e. $10 x-9 y+z=39$ cao	M1 A1	[6]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9795	01

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9795	01

Page 10	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2012	9795	01

