

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9795 FURTHER MATHEMATICS

9795/01

Paper 1 (Further Pure Mathematics), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2012	9795	01

1		$\sum_{r=1}^{n} (r^2 - r + 1) = \sum_{r=1}^{n} r^2 - \sum_{r=1}^{n} r + \sum_{r=1}^{n} 1$ Splitting summation and use of given results	M1	
		$= \frac{1}{6}n(n+1)(2n+1) - \frac{1}{2}n(n+1) + n \qquad 1^{\text{st}} \text{ for } \Sigma r^2; \ 2^{\text{nd}} \text{ for } \Sigma r \& \Sigma 1 = n$	B1 B1	
		$=\frac{1}{3}n(n^2+2)$ legitimately	A1	[4]
2		$A = k \int (\sin \theta + \cos \theta)^2 d\theta$ including squaring attempt; ignore limits and $k \neq \frac{1}{2}$	M1	
		$= \frac{1}{2} \int (1 + \sin 2\theta) d\theta \qquad \text{for use of the double-angle formula} \\ \mathbf{OR} \text{ integration of } \sin \theta \cos \theta \text{ as } k \sin^2 \theta \text{ or } k \cos^2 \theta$	В1	
		$= \frac{1}{2} \left[\theta - \frac{1}{2} \cos 2\theta \right]_{0}^{\pi/2} $ ft (constants only) in the integration;	A1	
		MUST be 2 separate terms		
		$=\frac{1}{4}\pi+\frac{1}{2}$	A1	[4]
3	(i)	$y = (\sinh x)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{1}{2} (\sinh x)^{-\frac{1}{2}} \cdot \cosh x \mathbf{OR} y^2 = \sinh x \Rightarrow 2y \frac{dy}{dx} = \cosh x$	M1 A1	
		$=\frac{\sqrt{1+y^4}}{2y}$	A1	[3]
	(ii)	$\int \frac{2y}{\sqrt{1+y^4}} dy = \int 1 dx \qquad \text{By Sep}^{\text{g}}. \text{ Vars. in (i)'s answer}$	M1	
		$\Rightarrow x = \int \frac{2y}{\sqrt{1+y^4}} \mathrm{d}y$	A1	
		But $x = \sinh^{-1} y^2$ so $\int \frac{2t}{\sqrt{1+t^4}} dx = \sinh^{-1} (t^2) + C$ condone missing "+ C"	A1	
		ALT.1 Set $t^2 = \sinh\theta$, $2t dt = \cosh\theta d\theta$ M1 Full substn. $\int \frac{2t}{\sqrt{1+t^4}} dt = \int \frac{\cosh\theta}{\sqrt{1+\sinh^2\theta}} d\theta A1 = \int 1 d\theta = \theta = \sinh^{-1}(t^2) A1$		
		ALT.2 Set $t^2 = \tan \theta$, $2t dt = \sec^2 \theta d\theta$ M1 Full substr. $\int \frac{2t}{\sqrt{1+t^4}} dt = \int \frac{\sec^2 \theta}{\sqrt{1+\tan^2 \theta}} d\theta A1 = \int \sec \theta d\theta$		
		$= \ln \sec\theta + \tan\theta = \ln t^2 + \sqrt{1+t^4} \mathbf{A1}$		[3]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2012	9795	01

4	(i)	$y = \frac{x+1}{x^2+3} \implies y \cdot x^2 - x + (3y-1) = 0$	Creating a quadratic in x	M1	
		For real x , $1 - 4y(3y - 1) \ge 0$	Considering the discriminant	M1	
		$12y^2 - 4y - 1 \le 0$	Creating a quadratic inequality	M1	
		For real x , $(6y + 1)(2y - 1) \le 0$	Factorising/solving a 3-term quadratic	M1	
		$-\frac{1}{6} \le y \le \frac{1}{2}$ cso NB lack of inequality earlier with unjusti M mark	fied correct answer loses only the 3 rd	A1	[5]
	(ii)	$y = \frac{1}{2}$ substd. back $\Rightarrow \frac{1}{2} (x^2 - 2x + 1) = 0$	$0 \implies x = 1 [y = \frac{1}{2}]$	M1 A1	
		$y - \frac{1}{6} =$ substd. back $\Rightarrow -\frac{1}{6} (x^2 + 6x + 9)$	$(x) = 0 \implies x = -3 \qquad [y = -\frac{1}{6}]$	M1 A1	
		Allow alternative approach via calculus: $\frac{dy}{dt} = \frac{-x^2 - 2x + 3}{(x^2 - x^2)^2}$ M1 Solving quadratic to find 2 values of x M1			
		Then A1 A1 each pair of correct (x, y) co	oordinates		[4]
5	(i)	(a) $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$		B1	
		(b) $ \begin{pmatrix} \cos\beta & \sin\beta \\ \sin\beta & -\cos\beta \end{pmatrix} $		B1	[2]
	(ii)	$ \begin{pmatrix} \cos\phi & \sin\phi \\ \sin\phi & -\cos\phi \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} $ Multr	n. of 2 reflection matrices. Correct order.	M1 M1	
		$= \begin{pmatrix} \cos\phi\cos\theta + \sin\phi\sin\theta & \cos\phi\sin\theta\\ \sin\phi\cos\theta - \cos\phi\sin\theta & \cos\phi\cos\theta \end{pmatrix}$	$-\sin\phi\cos\theta + \sin\phi\sin\theta$		
		$= \begin{pmatrix} \cos(\phi - \theta) & -\sin(\phi - \theta) \\ \sin(\phi - \theta) & \cos(\phi - \theta) \end{pmatrix} \qquad U$	se of the addition formulae; correctly done	M1 A1	
		giving a Rotation (about <i>O</i>) thro	ugh $(\phi - \theta)$ acw [or $(\theta - \phi)$ cw]	M1 A1	
		Those who get the initial matrices in the M mark	wrong order, can get 5/6, losing only that		[6]

-	Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper	
			Pre-U – May/June 2012	9795	01	
6	(i)	Possible	orders are 1, 2, 3, 4, 6 & 12		B1	
		By <i>Lagr</i> (since th	By <i>Lagrange's Theorem</i> , the order of an element divides the order of the group (since the order of an element \equiv the order of the subgroup generated by that element)		B1	[2]
	(ii)	E.g. <i>y</i> =	$xyx \Rightarrow y \cdot x^2y = xyx \cdot x^2y$ by G	Ð	M1	
			$= xy \cdot x^3 \cdot y = xy \cdot y^2 \cdot y \qquad by $	2	M1	
			$= x \cdot y^4 = x \cdot (y^2)^2$	[by @]		
			$= x \cdot (x^3)^2 = x \cdot e$ by (D		
		2 M 's fo	or first, correct uses of 2 different conditions; the A for the 3	r ^d condition used	A1	
		SPECIA	AL CASE Allow 2/3 for those who correctly argue the conv	verse		[3]
	(iii)	Proving OR esta	<i>G</i> not abelian: [e.g. by $xyx = y$ but $x^2 \neq e$] \Rightarrow <i>G</i> not cycliblishing a contradiction	с	B1 B1	[2]
7	(i)	$\cos 4\theta$ +	$i \sin 4\theta = (c + is)^4$ Use of <i>de Me</i>	oivre's Theorem	M1	
		$= c^4 + 4c$	c^{3} .is + $6c^{2}$.i ² s ² + $4c$.i ³ s ³ + i ⁴ s ⁴ Binomial expansion attempted	ed	M1	
		$\cos 4\theta =$	$c^4 - 6c^2s^2 + s^4$ and $\sin 4\theta = 4c^3s - 4cs^3$ Equating Relations	e & Im parts	M1	
		$\tan 4\theta =$	$\frac{\sin 4\theta}{\cos 4\theta} = \frac{4c^3s - 4cs^3}{c^4 - 6c^2s^2 + s^4}$		M1	
		Dividing	g throughout by c^4 to get $\frac{4t - 4t^3}{1 - 6t^2 + t^4}$ legitimately		A1	[5]
	(ii)	$t=rac{1}{5}\Rightarrow$	$\tan 4\theta = \frac{120}{119}$		B1	
		$\tan\left(\frac{1}{4}\pi\right)$	$+\tan^{-1}\frac{1}{239} = \frac{1+\frac{1}{239}}{1-\frac{1}{239}} = \frac{120}{119}$		M1 A1	
		Noting t	hat this is $\tan(4\tan^{-1}\frac{1}{5})$ so that $4\tan^{-1}\frac{1}{5} = \frac{1}{4}\pi + \tan^{-1}\frac{1}{239}$		A1	[4]

	Pa	ge 5	Mark Scheme: Teachers' version	Syllabus	Paper	
			Pre-U – May/June 2012	9795	01	
8	(i)	Subst ^g . x	$f = 1, f(1) = 2$ and $f'(1) = 3$ into (*) $\Rightarrow f''(1) = 5$		M1 A1	[2]
	(ii)	$\begin{cases} x^2 f'''(x) \\ \text{Product} \end{cases}$	$(2x-1)f''(x) + {(2x-1)f''(x) + 2f'(x)} - 2f'(x) = 3e^{x-1}$ Rule used twice; at least one bracket correct		M1 A1	
		Subst ^g . x	$f = 1, f'(1) = 3$ and $f''(1) = 5$ into this $\Rightarrow f'''(1) = -12$	ft their f"(1)	M1 A1	[4]
	(iii)	$\mathbf{f}(x) = \mathbf{f}(1)$	1) + f'(1)(x - 1) + $\frac{1}{2}$ f''(1)(x - 1) ² + $\frac{1}{6}$ f'''(1)(x - 1) ³ + Use	of the Taylor series	M1	
		= 2 + 3	$(x-1) + \frac{5}{2} (x-1)^2 - 2(x-1)^3 + \dots$ 1 st two terms cao ; 2 nd two terms ft	(i) & (ii)'s answers	A1 A1	[3]
	(iv)	Subst ^g . x	$x = 1.1 \implies f(1.1) \approx 2.323$ to 3d.p. cso (i.e. exactly this a	answer)	M1 A1	[2]
9	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} + y =$	$= 3x y^4$ is a Bernouilli (differential) equation			
		$u = \frac{1}{y^3}$	$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{3}{y^4} \times \frac{\mathrm{d}y}{\mathrm{d}x}$		B1	
		Then $\frac{dy}{dt}$	$\frac{y}{x} + y = 3x y^4 \text{ becomes } -\frac{3}{y^4} \times \frac{dy}{dx} - \frac{3}{y^3} = -9x \implies \frac{du}{dx} - 3$	u = -9x AG	M1 A1	[3]
	(ii)	Method	1			
		IF is e^{-3x}	x		M1 A1	
		$\Rightarrow u e^{-3x}$	$= \int -9x e^{-3x} dx$		M1	
			$= 3xe^{-3x} - \int 3e^{-3x} dx \qquad \text{Use of "particular}$	urts"	M1	
			$=(3x+1)e^{-3x}+C$		A1	
		Gen. Sol	In. is $u = 3x + 1 + Ce^{3x}$ ft		B1	
			$\Rightarrow y^3 = \frac{1}{3x + 1 + Ce^{3x}} \qquad \text{ft}$		B1	
		Using x	= 0, $y = \frac{1}{2}$ to find C $C = 7$ or $y^3 = \frac{1}{3x+1}$	$+7e^{3x}$	M1 A1	[9]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2012	9795	01

		Method 2		
		Aux. Eqn. $m - 3 = 0 \implies u_C = A e^{3x}$ is the Comp. Fn.	M1 A1	
		For Part. Intgl. try $u_P = ax + b$, $u_P' = a$	M1	
		Subst ^g . $u_P = ax + b$ and $u_P' = a$ into the d.e. and comparing terms	M1	
		$a-3ax-3b = -9x \implies a = 3, b = 1$ i.e. $u_P = 3x + 1$	A1	
		Gen. Soln. is $u = 3x + 1 Ae^{3x}$ ft PI + CF provided PI has no arbitrary constants and CF has one	B1	
		$\Rightarrow y^3 = \frac{1}{3x + 1 + Ae^{3x}} \qquad \text{ft}$	B1	
		Using $x = 0, y = \frac{1}{2}$ to find A $A = 7$ or $y^3 = \frac{1}{3x + 1 + 7e^{3x}}$	M1 A1	[9]
10	(i)	Subst ^g . $\begin{pmatrix} 1+3\lambda \\ -3+4\lambda \\ 2+6\lambda \end{pmatrix}$ into plane equation; i.e. $\begin{pmatrix} 1+3\lambda \\ -3+4\lambda \\ 2+6\lambda \end{pmatrix} \bullet \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix} = k$	M1	
		OR any point on line (since "given")		
		$k = 2 + 6\lambda + 18 - 24\lambda + 6 + 18\lambda = 26$	A1	[2]
	(ii)	Working with vector $\begin{pmatrix} 10+2m\\ 2-6m\\ 3m-43 \end{pmatrix}$.	B1	
		Subst ^g . into the plane equation: $\begin{pmatrix} 10+2m\\ 2+6m\\ 3m-43 \end{pmatrix} \bullet \begin{pmatrix} 2\\ -6\\ 3 \end{pmatrix} = k$	M1	
		Solving a linear equation in <i>m</i> : $20 + 4m - 12 + 36m + 9m - 129 = 26$	M1	
		$m=3 \implies Q=(16,-16,-34)$	A1	
		Sh. Dist. is $ m \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix} = 21$ or $PQ = \sqrt{6^2 + 18^2 + 9^2} = 21$	A1	
		Alternate methods that find only Sh. Dist. but not Q can score M1 A1 only		[5]

Pa	ge 7	Mark Scheme: Teachers' version	Syllabus	Paper	
		Pre-U – May/June 2012	9795	01	
(iii)	Finding	3 points in the plane: e.g. $A(1, -3, 2)$, $B(4, 1, 8)$, $C(10, 2, -3)$	-43)	M1	
	Then 2 v	vectors in (// to) plane: e.g. $\overrightarrow{AB} = \begin{pmatrix} 3\\ 4\\ 6 \end{pmatrix}, \ \overrightarrow{AC} = \begin{pmatrix} 9\\ 5\\ -45 \end{pmatrix}, \ \overrightarrow{BC} = \begin{pmatrix} 9\\ 5\\ -45 \end{pmatrix}$	$\begin{pmatrix} 6 \\ 1 \\ -51 \end{pmatrix}$	M1	
	OR B1	B1 for any two vectors in the plane			
	Vector p	product of any two of these to get normal to plane: $\begin{pmatrix} 10 \\ -9 \\ 1 \end{pmatrix}$		M1 A1	
	$d = \begin{pmatrix} 10 \\ -9 \\ 1 \end{pmatrix}$ $\Rightarrow 10x - 3$	• (any position vector) = $\begin{pmatrix} 10 \\ -9 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$ e.g. = 39 -9y + z = 39 cao (or any correct equivalent form)		M1 A1	[6]
	ALTER	NATE SOLUTION			
	ax + by	+ $cz = d$ contains $\begin{pmatrix} 1+3\lambda \\ -3+4\lambda \\ 2+6\lambda \end{pmatrix}$ and $\begin{pmatrix} 10 \\ 2 \\ -43 \end{pmatrix}$			
	so a	$+3a\lambda + 4b\lambda - 3b + 2c + 6c\lambda = d$ and $10a + 2b - 43c =$	= d	M1 B1	
1	Then a	$-3b+2c=d$ and $3a+4b+6c=0$ (λ terms) i.e. eq	uating terms	M1	
	Eliminat	ting (e.g.) c from 1 st two eqns. $\Rightarrow 9a + 10b = 0$		M1	
	Choosin	g $a = 10, b = -9 \implies c = 1$ and $d = 39$ i.e. $10x - 9y + z = 3$	39 cao	M1 A1	[6]

	Pag	ge 8	Mark Scheme: Teachers' version	Syllabus	Paper	
			Pre-U – May/June 2012	9795	01	
11	(i)	w =	$\overline{\left(\sqrt{3}-1\right)^2+\left(\sqrt{3}+1\right)} = \sqrt{4-2\sqrt{3}+4+2\sqrt{3}} = \sqrt{8}$ or $2\sqrt{8}$	2	M1 A1	
		arg(w) =	$\tan^{-1}\left(\frac{\sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}\right) = \tan^{-1}\left(2+\sqrt{3}\right) = \frac{5}{12}\pi$		M1 A1	[4]
	(ii)	(a) z^3	$= \left(2\sqrt{2}, \frac{5}{12}\pi\right), \left(2\sqrt{2}, \frac{29}{12}\pi\right), \left(2\sqrt{2}, -\frac{19}{12}\pi \text{ or } \frac{53}{12}\pi\right)$			
		$ $	$\frac{\arg(w)}{3}$ These method marks can be earned for just the $\sqrt{2}, \frac{5}{2\pi}\pi$, $(\sqrt{2}, \frac{29}{2\pi}\pi), (\sqrt{2}, -\frac{19}{2\pi}\pi)$ A marks for the	first root $2^{nd} \& 3^{rd}$ roots:	M1M1	
			$r e^{(i\theta)}$ forms	equally acceptable	A1 A1	[4]
		(b) z_1, z_2 $\Rightarrow z_1 z_2 z_3$ ALT. M	, z_3 the roots of $z^3 - 0.z^2 + 0.z - w = 0$ $z_3 = w = (\sqrt{3} - 1) + i(\sqrt{3} + 1)$ ultiplying the 3 roots together in any form		M1 A1	[2]
		(c)				
			Three points in approx.	correct places	M1	
			All equally spaced arou centre O , radius $\sqrt{2}$	nd a circle,	M1	
			(Explained that Δ_1 equi	lateral)	A1	
			$l = 2 \times \sqrt{2} \sin\left(\frac{1}{2} \times \frac{2}{3}\pi\right)$	$=\sqrt{6}$	M1	
			or by the <i>Cosine Rule</i>		A1	[5]
		(d) $k = e$	$\exp\{-i.\frac{5}{36}\pi\}$ or $\exp\{-i.\frac{29}{36}\pi\}$ or $\exp\{i.\frac{19}{36}\pi\}$		B1	[1]

	Pa	ge 9	Mark Scheme: Teachers' version Pre-U – May/June 2012	Syllabus 9795	Paper 01	
				0100	•	
12	(i)	$I_n = \int_0^3 x$	$n^{n-1}\left(x\sqrt{16+x^2}\right) dx$ Correct splitting <i>and</i> use of	of parts	M1	
		$=\left[x^{n-1}\right]$	$\left.\frac{\left(16+x^2\right)^{3/2}}{3}\right]_0^3 - \int_0^3 (n-1)x^{n-2} \frac{\left(16+x^2\right)^{3/2}}{3} dx$		A1	
		$= 3^{n-2} \cdot 1$ Method	$25 - \left(\frac{n-1}{3}\right) \int_0^3 x^{n-2} \left(16 + x^2\right) \sqrt{16 + x^2} dx$ to get 2 nd integral of correct form		M1	
		$= 3^{n-2}.1$	$25 - \left(\frac{n-1}{3}\right) \left\{ 16I_{n-2} + I_n \right\} \qquad \text{[i.e. reverting to } I'\text{s in } 2^n$	^d integral ft]	M1	
		$\Rightarrow 3 I_n =$	$= 3^{n-1} \cdot 125 - 16(n-1) I_{n-2} - (n-1) I_n$ Collecting u	I_n 's	M1	
		$(n+2) I_{n}$	$I_n = 125 \times 3^{n-1} - 16(n-1) I_{n-2}$ AG		A1	[6]
	(ii)	(a)				
			Spiral (with r inc.	reasing)	B1	
		_	From <i>O</i> to just sh	ort of $\theta = \pi$	B1	
						[2]
		(b) $r = \frac{1}{2}$	$\frac{1}{4}\theta^4 \Rightarrow \frac{\mathrm{d}r}{\mathrm{d}\theta} = \theta^3 \text{ and } r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2 = \frac{1}{16}\theta^8 + \theta^6$		M1 A1	
		$L = \int_0^3 \frac{1}{4}$	$\theta^3 \sqrt{16 + \theta^2} \left(= \frac{1}{4} I_3\right)$		M1 A1	
		Now I_1	$= \left[\frac{1}{3}\left(16 + x^2\right)^{3/2}\right]_0^3 = \frac{61}{3}$		B1	
		and $5I$	$_{3} = 125 \times 9 - 16 \times 2\left(\frac{61}{3}\right) = \frac{1423}{3}$ or $474\frac{1}{3}$ Use of given red	uction formula	M1	
		so that 1	$L = \frac{1}{20} \times \frac{1423}{3} = \frac{1423}{60}$ or $23\frac{43}{60}$ or awrt 23.7 ft only from	n suitable $k I_3$	A1	
		NB The	last 3 marks can be earned by integrating in a variety ways			[7]

Γ	Page 10	Mark Scheme: Teachers' version	Syllabus	Paper	
		Pre-U – May/June 2012	9795	01	
13	Base-lin	e case: for $n = 5$, 13579 $R_5 = 1508$ 7 6269 contains a string	of $(5 - 4 = 1)$ 7's	B1	
	13579 <i>R</i>	13579 $R_6 = 1508776269$, 13579 $R_7 = 15087776269$, etc. or form of 1 st & last 4 digits			
	Assume	that, for some $k \ge 5$, 13579 $R_k = 1508 \frac{777}{(k-4)7^{\circ}s} 6269$. Induction	on hypothesis	M1	
	Then, fo	r $n = k + 1$, 13579 $R_{k+1} = 13579(10R_k + 1)$		M1	
	Give the not subs	M mark for the key observation that $R_{k+1} = 10R_k + 1$ or a equently used.	$10^k + R_k$, even if		
		$= 1508 \frac{777}{(k-4)7's} 62690$			
		$=\frac{+13579}{1508\frac{777}{(k-4+1)7's}}$		A1	
	which co (usual ro	ontains a string of $(k - 4 + 1)$ 7's, as required. Proof follows bund-up).	by induction	E1	[6]