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1  

2
11       Splitting summation and use of given results 

 

M1 
 

  = nnnnnn ++−++ )1()12)(1(
2

1

6

1      1st for Σr2;  2nd for Σr  & Σ1 = n 
 

B1 B1  

  = )2(
2

3

1
+nn      legitimately 

 

A1 
 

[4] 

 

2  A = ∫ +
2)cos(sin θθk dθ  including squaring attempt; ignore limits and k ≠ 

2

1  
 

M1 
 

     = ∫ + )2sin1(
2

1
θ dθ  for use of the double-angle formula  

    OR integration of  sinθ cosθ  as k sin2θ  or  k cos2θ   

 

B1 

 

  

   = 
2

1

0

2/

2cos
2

1
π

θθ 





−  ft (constants only) in the integration;  

    MUST be 2 separate terms 

 

A1 

 

     = 
2

1

4

1
+π  

 

A1 
 

[4] 

 

3 
 

(i) xx
x

y
xy cosh.)(sinh

d

d
)(sinh 2

1

2

12

1
−

=⇒=    OR   x
x

y
yxy cosh
d

d
2sinh

2
=⇒=  

= 
y

y

2

1
4

+

 

 

M1 A1 

 
 

A1 
[3] 

  

(ii) ∫ ∫=
+

xy

y

y
d.1d

1

2

4

 By Sepg. Vars. in (i)’s answer 
 

M1 

 

  
∫

+

=⇒ y

y

y
x d

1

2

4

 
 

A1 

 

  
But x = sinh–1 y2   so   ∫

+
4

1

2

t

t
dx = sinh–1 (t 2) + C          condone missing “ + C ” 

 

A1 
 

  ALT.1   Set  t2 = sinhθ ,   2t dt = coshθ  dθ    M1 Full substn. 

               ∫
+

4
1

2

t

t
dt =

 
∫

+ θ

θ

2
sinh1

cosh
dθ   A1  = ∫1 .dθ  = θ  = sinh–1 (t2)   A1 

 

 

  ALT.2   Set  t2 = tanθ ,   2t dt = sec2θ  dθ    M1 Full substn. 

               ∫
+

4
1

2

t

t
dt = ∫

+ θ

θ

2

2

tan1

sec
dθ   A1  = ∫ θsec .dθ   

                                    = ln|secθ  + tanθ |  = |1|ln 42
tt ++   A1 

 

[3] 
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4 
 

 (i) y = 
3

1

2
+

+

x

x

  ⇒  y.x2 – x + (3y – 1) = 0 Creating a quadratic in x 
 

M1 
 

  For real x, 1 – 4y(3y – 1) ≥ 0   Considering the discriminant M1  

  12y2 – 4y – 1 ≤ 0   Creating a quadratic inequality M1  

  For real x, (6y + 1)(2y – 1) ≤ 0  Factorising/solving a 3-term quadratic M1  

  
2

1

6

1
≤≤− y    cso 

NB lack of inequality earlier with unjustified correct answer loses only the 3rd 

M mark 

 

A1 

[5] 

 
 

(ii) y = 
2

1  substd. back  ⇒ 
2

1  (x2 – 2x + 1) = 0  ⇒  x = 1     [ y =
2

1 ] 
 

M1 A1 
 

  y 
6

1
− =  substd. back  ⇒ 

6

1
−   (x2 + 6x + 9) = 0  ⇒  x = –3      [y =

6

1
− ] 

 

M1 A1 
 

  Allow alternative approach via calculus: 

( )22

2

3

32

d

d

+

+−−
=

x

xx

x

y
 M1     Solving quadratic to find 2 values of x  M1 

Then  A1 A1 each pair of correct (x, y) coordinates 

 

[4] 

 

5 
 

 (i) (a)  






 −

αα

αα

cossin

sincos
 

(b)  








− ββ

ββ

cossin

sincos
 

 

B1 

 
 

B1 
[2] 

  

 (ii) 








−








− θθ

θθ

φφ

φφ

cossin

sincos

cossin

sincos
   Multn. of 2 reflection matrices. Correct order. 

 

M1 M1 
 

  
= 









+−

−+

θφθφθφθφ

θφθφθφθφ

sinsincoscossincoscossin

cossinsincossinsincoscos
 

 

 

  
= 









−−

−−−

)cos()sin(

)sin()cos(

θφθφ

θφθφ
             Use of the addition formulae; correctly done 

 

M1 A1 
 

  … giving a Rotation (about O)          through (φ  – θ ) acw   [or (θ  – φ ) cw] 

 

Those who get the initial matrices in the wrong order, can get 5/6, losing only that 

M mark 

M1 A1 

[6] 
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6 (i) Possible orders are  1, 2, 3, 4, 6 & 12 B1  

  By Lagrange’s Theorem, the order of an element divides the order of the group 

(since the order of an element ≡ the order of the subgroup generated by that element) 

B1 

[2] 

 (ii) E.g.  y = xyx  ⇒  y . x2y = xyx . x2y                                              by � M1  

      = xy . x3 . y  = xy . y2 . y                          by � M1  

       = x . y4 = x . (y2)2                            [by �]   

       = x . (x3)2 = x . e     by �   

  2 M’s for first, correct uses of 2 different conditions; the A for the 3rd condition used 

to clinch the result. 

SPECIAL CASE Allow 2/3 for those who correctly argue the converse 

A1 

[3] 

 (iii) Proving G not abelian: [e.g. by  xyx = y  but  x2 ≠ e]  ⇒  G not cyclic 

OR establishing a contradiction 

B1 B1 

[2] 

7 (i) cos4θ  + i sin4θ  = (c + is)4                                            Use of de Moivre’s Theorem M1  

  = c4 + 4c3.is + 6c2.i2s2 + 4c.i3s3 + i4s4    Binomial expansion attempted M1  

  cos4θ  = c4 – 6c2s2 + s4  and   sin4θ  = 4c3s – 4cs3           Equating Re & Im parts M1  

  
tan4θ  = 

θ

θ

4cos

4sin
 = 

4224

33

6

44

sscc

cssc

+−

−

 

Dividing throughout by c4 to get   
42

3

61

44

tt

tt

+−

−

 legitimately 

 

M1 

 
 

A1 
[5] 

 (ii) t = 
5

1  ⇒ tan4θ  = 
119

120  
 

B1 
 

  ( )
119

120

239

1

239

1

239

11

4

1

1

1
tantan =

−

+

=+
−

π

 

 

M1 A1 

 

  Noting that this is tan(4 tan–1
5

1 )   so that 4tan–1
5

1  = 
4

1
π + tan–1

239

1
  

 

A1 [4] 
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8 (i) Substg. x = 1, f(1) = 2  and  f ′(1) = 3  into (*)  ⇒  f ″(1) = 5 M1 A1 [2] 

 
 

(ii) { } ( ){ } 12 e3)(f2)(f2)(f12)(f2)(f −

=′−′+′′−+′′+′′′
x

xxxxxxxx  

Product Rule used twice; at least one bracket correct 

 

M1 

A1  

  Substg. x = 1, f′(1) = 3  and  f ″(1) = 5  into this  ⇒  f ″′(1) = –12   ft  their f ″(1) M1 A1 [4] 

 
 

(iii) f(x) = f(1) + f ′(1)(x – 1) + 
2

1 f ″(1)(x – 1)2 + 
6

1
f ″′(1)(x – 1)3 + … 

Use of the Taylor series 

 

M1 

 

  =   2 + 3(x – 1) + 
2

5
 (x – 1)2 – 2(x – 1)3 + …  1st two terms cao; 

2nd two terms ft (i) & (ii)’s answers 

 

A1 A1 

[3] 

 (iv) Substg. x = 1.1     ⇒  f(1.1) ≈ 2.323   to 3d.p. cso (i.e. exactly this answer) M1 A1 [2] 

9 (i) 

x

y

d

d
+ y = 3x y4   is a Bernouilli (differential) equation 

 

 

  

3

1

y
u =   ⇒  

x

y

yx

u

d

d3

d

d

4

×−=  
 

B1 

 

  
Then  

x

y

d

d
+ y = 3x y4  becomes  x

yx

y

y

9
3

d

d3

34

−=−×−   ⇒  xu

x

u

93
d

d
−=−     AG 

 

M1 A1 

[3] 

 (ii) Method 1   

  IF is  e–3x M1 A1  

  ∫ −−

−=⇒ xxu
xx

de9e
33  

 

M1 
 

                = ∫ −−

− xx
xx

de3e3
33                                            Use of “parts” M1 

 

                = (3x + 1)e–3x + C A1  

  Gen. Soln. is   u = 3x + 1 + Ce3x ft B1  

  
                  ⇒  

x

Cx
y

3

3

e13

1

++

=  ft 
 

B1 
 

  
Using  x = 0, y = 

2

1   to find C                      C = 7  or  
x

x
y

3

3

e713

1

++

=  
 

M1 

A1 [9] 
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  Method 2   

  Aux. Eqn.  m – 3 = 0  ⇒  uC = Ae
3x  is the Comp. Fn. M1 A1  

  For Part. Intgl. try  uP = ax + b ,  uP′ = a M1  

  Substg.  uP = ax + b and  uP′ = a  into the d.e. and comparing terms M1  

  a – 3ax – 3b = –9x  ⇒  a = 3, b = 1     i.e.  uP = 3x + 1 A1  

  Gen. Soln. is   u = 3x + 1 Ae3x                          ft  PI + CF  provided PI has no 

                                                                              arbitrary constants and CF has one 

B1 

 

  
                  ⇒  

x

Ax
y

3

3

e13

1

++

=                       ft 
 

B1 
 

  
Using  x = 0, y = 

2

1
  to find A                      A = 7  or  

x

x
y

3

3

e713

1

++

=  
 

M1 

A1 [9] 

 

 

10 

 

 

(i) 
Substg. 

















+

+−

+

λ

λ

λ

62

43

31

   into plane equation; i.e.  k=
















−•
















+

+−

+

3

6

2

62

43

31

λ

λ

λ

 

OR any point on line (since “given”) 

 
 

M1 

 

  k = 2 + 6λ + 18 – 24λ + 6 + 18λ = 26 A1 [2] 

 (ii) 

Working with vector
















−

−

+

433

62

210

m

m

m

.  

Substg. into the plane equation: k

m

m

m

=
















−•
















−

+

+

3

6

2

433

62

210

 

 

B1 

 

 

 

M1 

 

  Solving a linear equation in m:   20 + 4m – 12 + 36m + 9m – 129 = 26 M1  

  m = 3  ⇒  Q = (16, –16, –34) A1  

  

Sh. Dist. is  |m| 
















−

3

6

2

= 21  or PQ = 219186
222
=++  

Alternate methods that find only Sh. Dist. but not Q can score M1 A1 only 

 
 

A1 

[5] 
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 (iii) Finding 3 points in the plane: e.g.  A(1, –3, 2),  B(4, 1, 8),  C(10, 2, –43) M1  

  

Then 2 vectors in (// to) plane: e.g. 
















−

=
















−

=
















=

51

1

6

  ,

45

5

9

  ,

6

4

3

BCACAB  

OR B1 B1 for any two vectors in the plane 

 
 

M1 

 

  

Vector product of any two of these to get normal to plane: 
















−

1

9

10

  

(any non-zero multiple) 

 
 

M1 

A1 

 

  

d = 
















−

1

9

10

• (any position vector) = 
















−•
















−

2

3

1

1

9

10

e.g. = 39 

⇒  10x – 9y + z = 39  cao (or any correct equivalent form) 

 

M1 

A1 

[6] 

  ALTERNATE SOLUTION   

  

ax + by + cz = d  contains 
















+

+−

+

λ

λ

λ

62

43

31

 and 
















− 43

2

10

  

 

 

  ... so   a + 3aλ + 4bλ – 3b + 2c + 6cλ = d     and     10a + 2b – 43c = d M1 B1  

  Then  a – 3b + 2c = d     and     3a + 4b + 6c = 0 (λ  terms)      i.e. equating terms M1  

  Eliminating (e.g.) c from 1st two eqns.  ⇒  9a + 10b = 0 M1  

  Choosing  a = 10, b = –9  ⇒  c = 1  and  d = 39  i.e.  10x – 9y + z = 39  cao M1 A1 [6] 
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11 
 

(i) | w | = ( ) ( ) 83243241313
2

=++−=++−   or  22  
 

M1 

A1  

  

arg(w) = 










+

+
×

−

+
−

13

13

13

13
tan

1
 = ( ) π

12

51
32tan =+

−

 

 

M1 A1 

[4] 

 (ii) (a)     z3 = ( )π
12

5  ,22 ,  ( )π
12

29  ,22 ,  ( )ππ
12

53

12

19 or      ,22 −   
 

  
3 || w ;   

3

)arg(w
      These method marks can be earned for just the first root 

⇒  z = ( )π
36

5  ,2 ,  ( )π
36

29  ,2 ,  ( )π
36

19  ,2 −        A marks for the 2nd & 3rd roots: 

r e^(iθ) forms equally acceptable 

 

M1M1 

 

 
 

A1 A1 [4] 

  (b) z1, z2, z3  the roots of  z
3 – 0.z2 + 0.z – w = 0 

⇒  z1 z2 z3 = w  ( ) ( )13i13 ++−=  

ALT. Multiplying the 3 roots together in any form 

M1 
 

A1 

[2] 

  (c) 

 

Three points in approx. correct places 

 

All equally spaced around a circle, 

centre O, radius 2  

(Explained that  ∆1 equilateral) 

 

( )π
3

2

2

1sin22 ××=l          = 6  

or by the Cosine Rule 

 

 

 

M1 

 

M1 

 

A1 

 

M1 
 

A1 

[5] 

  (d) k = exp{ }π
36

5.i−   or  exp{ }π
36

29.i−   or  exp{ }π
36

19.i  B1 
[1] 
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12 (i) 
In = 





 +∫ − 2

3 

0 

1
16 xxx

n  dx                        Correct splitting and use of parts M1 
 

  

= 
( )

0

3

 
3

16
.

2/32

1  











 +
−

x

x
n

 – ∫ −

−

3 

0 

2)1( n

xn

( )
3

16
2/32

x+
 dx 

 
 

A1 

 

  
= 







 −
−⋅−

3

1
1253

2 n
n ( ) 22

3 

0 

2
1616 xxx

n

++∫ − dx 

Method to get 2nd integral of correct form 

 

M1 

 

  
= 







 −
−−

3

1
125.3

2  n
n { }

nn
II +

− 2  
16           [i.e. reverting to I’s in 2nd integral  ft] 

 

M1 
 

  ⇒  3 In = 3
n – 1.125 – 16(n – 1) In – 2– (n – 1) In                 Collecting up In’s M1  

  (n + 2) In = 125 × 3
n – 1 – 16(n – 1) In – 2  AG A1 [6] 

 (ii) (a) 

 

 

Spiral (with r increasing) 

 

 

From O to just short of  θ =π 

 

 

 

 

 

 

 

B1 

 

 

B1 

[2] 

  

(b) 
4

4

1θ=r   ⇒  
3

d

d
θ

θ
=

r

   and   
68

16

1

2

2

d

d
θθ

θ
+=








+

r

r  

 

M1 A1 
 

  
L = ∫ +

3 

0 

23

4

1 16 θθ  ( )
34

1
I=  M1 A1 

 

  

Now  ( )
0

3

2/32

1
16

3

1







+= xI = 

3

61  

 
 

B1 

 

  and   ( )
3

1423

3

61

3
21691255 =×−×=I   or  

3

1474    Use of given reduction formula 
 

M1  

  so that  L = 
60

1423

3

1423

20

1
=×   or  

60

43
23  or awrt 23.7          ft only from suitable  k I3 

 

A1  

  NB The last 3 marks can be earned by integrating in a variety ways  [7] 
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13  Base-line case: for n = 5,  13579 R5 = 1508 7 6269 contains a string of (5 – 4 = 1) 7’s B1  

  13579 R6 = 1508776269,  13579 R7 = 15087776269, etc. or form of 1st & last 4 digits B1  

  Assume that, for some k ≥ 5, 13579 Rk = 1508 77…7 6269.   Induction hypothesis 

                                (k – 4) 7’s 
M1 

 

  Then, for n = k + 1,  

                                    13579 Rk + 1 = 13579(10Rk + 1) 

 

Give the M mark for the key observation that  Rk + 1 = 10Rk + 1  or  10
k + Rk  , even if 

not subsequently used. 

 

M1 

 

      = 1508 77…7 62690  

                           (k – 4) 7’s 

                                                       + 13579 

    = 1508 77…7 76269 

      (k – 4   + 1) 7’s 

 

 

 

A1 

 

  which contains a string of (k – 4 + 1) 7’s, as required. Proof follows by induction 

(usual round-up). 

E1 

[6] 

 




