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1 Given that the matrix A = ( 2 k

1 −3
), where k is real, is such that A3 = I, find the value of k and the

numerical value of det A. [4]

2 The cubic equation x3 + x2 + 7x − 1 = 0 has roots α, β and γ .

(i) Show that α2 + β2 + γ 2 = −13. [3]

(ii) State what can be deduced about the nature of these roots. [2]

3 (i) Express f(r − 1) − f(r) as a single algebraic fraction, where f(r) = 1

(2r + 1)2
. [1]

(ii) Hence, using the method of differences, show that

n

∑
r=1

r

(4r2 − 1)2
= n(n + 1)

2(2n + 1)2

for all positive integers n. [4]

4 (i) On a single diagram, sketch the graphs of y = tanh x and y = cosh x − 1, and use your diagram to

explain why the equation f(x) = 0 has exactly two roots, where

f(x) = 1 + tanh x − cosh x. [3]

(ii) The non-zero root of f(x) = 0 is α.

(a) Verify that 1 < α < 1.5. [1]

(b) Taking x
1
= 1.25 as an initial approximation to α, use the Newton-Raphson iterative method

to find x
3
, giving your answer to 5 decimal places. [4]

5 Find the general solution of the differential equation
d2y

dx2
+ y = 8x2. [7]

6 Consider the set S of all matrices of the form (p p

p p
), where p is a non-zero rational number.

(i) Show that S, under the operation of matrix multiplication, forms a group, G. [5]

(ii) Find a subgroup of G of order 2 and show that G contains no subgroups of order 3. [4]

7 Sketch the curve with equation y = x2 + 4x

2x − 1
, justifying all significant features. [11]
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8 (i) Determine the two values of k for which the system of equations

x + 2y + 3ß = 4

2x + 3y + kß = 9

x + ky + 6ß = 1

has no unique solution. [3]

(ii) Show that the system is consistent for one of these values of k and inconsistent for the other. [4]

9 (a) The points A, B and C have position vectors

a = ( 19

3

10

), b = ( 12

7

−1

) and c = ( 5

15

3

)
respectively, and O is the origin. Calculate the volume of the tetrahedron OABC. [3]

(b) (i) The plane Π
1

has equation r = (2

1

4

) + λ( 3

1

−1

) + µ(6

2

5

). Determine an equation for Π
1

in

the form r.n = d. [4]

(ii) A second plane, Π
2
, has equation r.(1

4

7

) = 13. Find a vector equation for the line of

intersection of Π
1

and Π
2
. [4]

10 (i) Use de Moivre’s theorem to show that cos 3θ = 4 cos3 θ − 3 cos θ. [2]

(ii) The sequence {u
n
} is such that u

0
= 1, u

1
= cos θ and, for n ≥ 1,

u
n+1

= (2 cos θ)u
n
− u

n−1
.

(a) Determine u
2

and u
3

in terms of powers of cos θ only. [2]

(b) Suggest a simple expression for u
n
, the nth term of the sequence, and prove it for all positive

integers n using induction. [6]

11 (i) Let I
n
= ã

1
6

π

0

secn t dt for positive integers n. Prove that, for n ≥ 2,

(n − 1)I
n
= 2n−2

(√3)n−1
+ (n − 2)I

n−2
. [5]

(ii) The curve with parametric equations x = tan t, y = 1
2

sec2 t, for 0 ≤ t ≤ 1
6
π, is rotated through

2π radians about the x-axis to form a surface of revolution of area S. Show that S = πI
5

and

evaluate S exactly. [10]
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12 The complex number ß
1

is such that ß
1
= a + ib, where a and b are positive real numbers.

(i) Given that ß2
1
= 2 + 2i, show that a = √√2 + 1 and find the exact value of b in a similar form. [5]

The complex number ß
2

is such that ß
2
= −a + ib.

(ii) (a) Determine arg ß
2

as a rational multiple of π.

[You may use the result tan(1
8
π) = √2 − 1.] [2]

(b) The point P
n

in an Argand diagram represents the complex number ßn
2
, for positive integers n.

Find the least value of n for which P
n

lies on the half-line with equation

arg(ß) = 1
4
π. [3]

13 (i) (a) Given that t = tan x, prove that
2

2 − sin 2x
= 1 + t2

1 − t + t2
. [2]

(b) Hence determine the value of the constant k for which

d

dx
{ tan−1(1 − 2 tan x√

3
)} = k

2 − sin 2x
. [4]

(ii) The curve C has cartesian equation x2 − xy + y2 = 72.

(a) Determine a polar equation for C in the form r2 = f(θ), and deduce the polar coordinates

(r, θ), where 0 ≤ θ < 2π, of the points on C which are furthest from the pole O. [7]

(b) Find the exact area of the region of the plane in the first quadrant bounded by C, the x-axis

and the line y = x. Deduce the total area of the region of the plane which lies inside C and

within the first quadrant. [5]
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