

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9795 FURTHER MATHEMATICS

9795/02

Paper 2 (Further Application of Mathematics), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus	Paper	
		Pre-U – May/June 2011	9795	02	
1	(i)	$(X_1 + X_2 + X_3) - (Y_1 + Y_2 + Y_3 + Y_4) \sim N((3 \times 30 - 4 \times 20), (3 \times 30 - 4 \times 20))$ i.e. N(10,43)	×9+4×4))	B1,B1	[2]
	(ii)	$z = \frac{0 - 10}{\sqrt{43}} = -1.52(5) \qquad (\text{Accept 1.52 to 1.53})$		M1A1	
		$P(X_1 + X_2 + X_3 > Y_1 + Y_2 + Y_3 + Y_4) = 0.936$		A1	[3]
2	(i)	$P(X \le 5) = e^{-12.25} \left(1 + 12.25 + \frac{12.25^2}{2!} + \frac{12.25^3}{3!} + \frac{12.25^4}{4!} + \frac{12.25}{5!} \right)$	$\left(\frac{5^5}{2}\right)$	M1A1	
		= 0.0174		A1	[3]
	(ii)	$z = \frac{5.5 - 12.25}{3.5} = -1.929$		M1A1	
		$P(X \le 5)$ (from tables) = 1 - 0.9731 = 0.0269 (Allow 0.027(0))		A1	[3]
	(iii)	Result is not reliable (error is approximately 50%). The mean is not large enough.		B1 B1	[2]
3	(i) (a)	$s^{2} = \frac{156.88 + 123.97}{15 + 10 - 2} = 12.21$ (AG)		M1A1	[2]
	(b)	$\overline{x}_A = 30.7$ $\overline{x}_B = 33.4$ $v = 23$ $t_{23}(0.975) = 2.069$		B1 B1B1	
		95% confidence limits are:		M1A1√	
		$(33.4-30.7) \pm 2.069 \times 3.494 \sqrt{\frac{1}{15} + \frac{1}{10}}$			
		95% confidence interval is: (-0.252, 5.65) (Accept -0.251 for L	B)	A1	[6]
	(ii)	Since $0 \in CI$ there is not enough evidence to suggest that the claim	m is valid.	M1A1√	[2]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper	
	Pre-U – May/June 2011	9795	02	
4 (i)	$E(X^{2}) = \int_{0}^{\infty} \frac{x^{2}}{\theta} e^{-\frac{x}{\theta}} dx$		M1	
	$= \left[-x^2 e^{-\frac{x}{\theta}} \right]_{0}^{\infty} + \int_{0}^{\infty} 2x e^{-\frac{x}{\theta}} dx$		M1A1	
	$= \left[-2x\theta e^{-\frac{x}{\theta}} \right]_{0}^{\infty} + \int_{0}^{\infty} 2\theta e^{-\frac{x}{\theta}} dx$		M1	
=	$= \left[-2\theta^2 e^{-\frac{x}{\theta}} \right]_0^{\infty}$			
=	$= 2\theta^2$		A1	[5
(ii) _E	$E(T) = \theta^2$		B1	
]	$E(T) = E[k(X_1^2 + X_2^2 + \dots + X_n^2)]$ = $k[E(X_1^2) + E(X_2^2) + \dots + E(X_n^2)]$		M1	
=	$= k \left[E(X_1^2) + E(X_2^2) + \dots + E(X_n^2) \right]$		A1	
	$= kn E(X^2)$			
	$\Rightarrow \theta^2 = 2kn\theta^2$		M1	
	$\Rightarrow k = \frac{1}{2n}$		A1	[5

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	
		Pre-U – May/June 2011	9795	02	
5	(i)	$P(X=r) = q^{r-1}p \implies M(t) = \sum_{l=1}^{\infty} q^{r-1} p e^{tr}$		M1	
		$=\frac{p}{q}\sum_{1}^{\infty}(qe^{t})^{r}$		A1	
		$= \frac{p}{q} \times \frac{q \mathbf{e}^{t}}{1 - q \mathbf{e}^{t}} = \frac{p \mathbf{e}^{t}}{1 - q \mathbf{e}^{t}} \qquad (AG)$		A1	[3]
	(ii) (a)	$M'(t) = \frac{(1 - qe^{t})pe^{t} + pe^{t}.qe^{t}}{(1 - qe^{t})^{2}} = \frac{pe^{t}}{(1 - qe^{t})^{2}}$		M1	
		$E(X) = M'(0) = \frac{p}{(1-q)^2} = \frac{p}{p^2} = \frac{1}{p}$		M1A1	
	(b)	$M''(t) = \frac{(1-qe^{t})^{2} \cdot pe^{t} + 2pe^{t}(1-qe^{t})qe^{t}}{(1-qe^{t})^{4}}$		M1	
		$E(X^{2}) = M''(0) = \frac{p^{3} + 2p^{2}q}{p^{4}} = \frac{p + 2q}{p^{2}} = \frac{1 + q}{p^{2}} (acf)$		A1	
		$\operatorname{Var}(X) = \frac{1+q}{p^2} - \frac{1}{p^2} = \frac{q}{p^2}$ or $\frac{1-p}{p^2}$ (OE)		M1A1	[7]
	(iii)	$\mu = 6$ and $\sigma^2 = 30$ (or $\sigma = \sqrt{30}$)		B1	
		$P(Y-6 < \sqrt{30}) = P(Y \le 11)$		M1	
		$= 1 - \left(\frac{5}{6}\right)^{11} = 0.865$		A1	[3]

Pa	ige 5				hers' version		Syllabus	Paper	
			Pre	-U – May/Ju			9795	02	
6	(i)	$F(x) = \int_0^x \frac{2}{\pi}$	$\frac{1}{2} dx = \left[\frac{2x}{\pi}\right]_{0}^{x}$	$=\frac{2x}{\pi}$	$\left(0 < x < \frac{\pi}{2}\right)$			B1B1	
			$=\frac{2\sin^{-1}y}{\pi}$		0 < y < 1			B1B1	
			$\frac{\mathrm{dG}}{\mathrm{dy}} = \begin{pmatrix} \pi \sqrt{2} \\ \pi \sqrt{2} \\ 0 \end{pmatrix}$	$\frac{2}{1-v^2}$	0 < y < 1	(AG)		M1A1	[6]
			$\frac{dy}{dy} = \begin{pmatrix} n \sqrt{2} \\ 0 \end{pmatrix}$	I – <i>Y</i>	Otherwise	(AU)			
		OR For $X \sim U \Big($	$\left(0,\frac{\pi}{2}\right)$ and	$y = \sin x$				B1	
		$\int_0^{\frac{\pi}{2}} \frac{2}{\pi} dx = 1$						B1	
				$x = \frac{\pi}{2} \Longrightarrow y =$	= 1				
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x$	$\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\cos x}$	$\frac{1}{x} = \frac{1}{\sqrt{1 - y^2}}$				M1A1	
		$\int_0^1 \frac{2}{\pi} \cdot \frac{1}{\sqrt{1-\pi}}$	$\frac{1}{v^2}$ dy = 1					A1	
		•	•	0 < y < 1 Otherwise	(AG)			A1	[6]
(i	i) (a)	$\int_0^M \frac{2}{\pi\sqrt{1-1}}$	$\frac{1}{v^2}$ dy = $\frac{1}{2}$					M1	
		$\frac{2}{\pi} \arcsin N$						M1A1	
			$\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$	(CAO)				M1A1	[5]
	(b)	<pre></pre>	$\frac{y}{\sqrt{1-y^2}} \cdot \frac{y}{\sqrt{1-y^2}} dy$					M1	
			$\frac{1}{-y^2} \int_0^1 \frac{1}{-y^2} = \frac{2}{\pi}$					M1A1	[3]
		μ Γ	Λ 0 Γ						

	Page 6	Mark Scheme: Teachers' version	Syllabus	Paper	
		Pre-U – May/June 2011	9795	02	
7	(i)	Uses conservation of energy:			
		$0.3 \times 10 \times 1.5(\cos 40^{\circ} - \cos 75^{\circ}) = \frac{1}{2} \times 0.3v^2$ where speed is v	ms^{-1} .	M1A1	
		$\Rightarrow v = 3.90$ (AG) (g = 9.8 gets M1A1A0).		A1	[3]
	(ii)	Transverse component = $-g \sin 40^{\circ} = -6.428 = -6.43 \text{ ms}^{-2}$ (Is	gnore sign).	B1	
		Radial component = $\frac{v^2}{r} = \frac{15.216}{1.5} = 10.1(4) \text{ ms}^{-2}$		B1	
		Magnitude of acceleration = $\sqrt{(6.428^2 + 10.14^2)} = 12.0 \text{ ms}^{-2}$.		В1√	[3]
8	(i) (a)	Component of velocity perpendicular to wall = $0.4 \times 7 \sin 60^{\circ}$ (=2.425)	M1A1	[2]
	(b)	Uses impulse = change in momentum.		M1	
		$ \text{Im} = 0.3(7\sin 60^\circ + 0.4 \times 7\sin 60) = 2.55 \text{ Ns}$		A1	[2]
	(ii)	Magnitude of velocity = $\sqrt{(7\cos 60^{\circ})^{2} + (0.4 \times 7\sin 60^{\circ})^{2}} = 4.$	26 ms^{-1} .	M1A1	
		Direction = $\tan^{-1} \left(\frac{0.4 \times 7 \sin 60^{\circ}}{7 \cos 60^{\circ}} \right) = 34.7^{\circ}$		M1A1	[4]
9	(i)	$v_{A} = (10\sin 42^{\circ})i + (10\cos 42^{\circ})j$ and $v_{B} = 15i$			
		$_{A}\mathbf{v}_{B} = (10\sin 42^{\circ} - 15)\mathbf{i} + (10\cos 42^{\circ})\mathbf{j}$ (Accept -8.31 \mathbf{i} + 7	.43 j).	M1A1	[2]
	(ii)	$\mathbf{r}_{A} = (10\sin 42^{\circ})t\mathbf{i} + (10\cos 42^{\circ})t\mathbf{j}$ and $\mathbf{r}_{B} = 15t\mathbf{i} + 13\mathbf{j}$			
		$_{A}\mathbf{r}_{B} = (10\sin 42^{\circ} - 15)t\mathbf{i} + (10\cos 42^{\circ} t - 13)\mathbf{j}$		M1A1	[2]
		(Accept - 8.31 ti + [7.43 t - 13]j).			
	(iii)	By considering relative motion, one object is taken to be at rest moving relative to it. Hence, when closest together, the relative is perpendicular to the relative velocity vector; (i.e. dot product =	position vector	B1	[1]
	(iv)	$_{A}\mathbf{r}_{B}$, $_{A}\mathbf{v}_{B} = (10\sin 42^{\circ} - 15)^{2}t + 10\cos 42^{\circ}(10\cos 42^{\circ}t - 13) =$	= 0	M1A1	
		$\Rightarrow (100\sin^2 42^\circ - 300\sin 42^\circ + 225)t + 100\cos^2 42^\circ t - 130c$	$\cos 42^\circ = 0$		
		$\Rightarrow t = \frac{130\cos 42^{\circ}}{(325 - 300\sin 42^{\circ})} = 0.777 \text{ or } 47 \text{ minutes (i.e. } 1247)$		M1A1	[4]

	Page 7	Mark Scheme: Teachers' version	Syllabus	Paper	
		Pre-U – May/June 2011	9795	02	
10	(i)	$T_1 = \frac{20x}{2}$, where T_1 is the tension in AP (or BP)		M1A1	
		$T_2 = \frac{10(3-x)}{1}$, where T_2 is the tension in the other string.		A1	
	(**)	$10x = 30 - 10x \implies x = 1.5$ So <i>AP</i> is 3.5 metres.		A1	[4]
	(ii)	Apply Newton II: $\frac{10(1.5-y)}{1} - \frac{20(1.5+y)}{2} = 0.5\ddot{y}$ $\Rightarrow \ddot{y} = -40y \qquad (\Rightarrow \overline{\sigma} = \sqrt{40}) (AG)$		M1A1	
		$\Rightarrow \ddot{y} = -40y \qquad (\Rightarrow \overline{\sigma} = \sqrt{40}) (AG)$		A1	[3]
	(iii)	Use $y = a \cos \omega t$ - 0.5 = cos($\sqrt{40t}$) (a= 1)		M1A1	
		$\frac{2\pi}{3} = \sqrt{40}t \implies t = \frac{\pi}{3\sqrt{10}} (= 0.331)$		M1A1	[4]
11	(i)	Take x and y axes along and perpendicular to plane. $y = V \sin \theta t - 0.5g \cos \alpha t^2$		M1	
		$y = 0$ on landing $\Rightarrow t = \frac{2V \sin \theta}{g \cos \alpha}$		M1A1	
		$x = v \cos \theta \left(\frac{2V \sin \theta}{g \cos \alpha}\right) - \frac{1}{2}g \sin \alpha \left(\frac{2V \sin \theta}{g \cos \alpha}\right)^2 \text{(up plane).}$		M1A1	
		$\Rightarrow x = \frac{2V^2 \sin \theta}{g \cos^2 \alpha} (\cos \theta \cos \alpha - \sin \theta \sin \alpha) (AG)$		A1	[6]
	(ii)	$\frac{2V^2 \sin \theta}{g \cos^2 \alpha} (\cos \theta \cos \alpha + \sin \theta \sin \alpha) \text{(down plane).}$		B1	[1]
	(iii)	$4(\cos\theta\cos\alpha - \sin\theta\sin\alpha) = \cos\theta\cos\alpha + \sin\theta\sin\alpha$		M1A1√	
		$\Rightarrow 3\cos\theta\cos\alpha = 5\sin\theta\sin\alpha$ $\Rightarrow \frac{3}{2} = 5\tan\theta$		M1	
		$\tan \alpha$ $\Rightarrow \tan \theta = 1.2 \Rightarrow \theta = 50.2^{\circ}$ (Allow $\tan^{-1} 1.2$ or 0.876 rad.))	A1A1	[5]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper	
	Pre-U – May/June 2011	9795	02	
12 (i)	Driving force at speed v is $\frac{400000}{v}$ N		B1	
	Resistive forces total $20000 + \frac{250000 \times 10}{500} = 25000$ (N here.)	to penalty for g=9.8	M1A1	
	At maximum speed these are equal		M1A1	[5]
	$\frac{400000}{v} = 25000 \Longrightarrow v = 16 \text{ ms}^{-1}.$ (Allow 16.1 from g= 9.8	3)	INT A I	[5]
(ii)	Apply Newton II 400000 dv 16 dv dv		M1A1	
	$\frac{400000}{v} - 25000 = 250000v \frac{dv}{dx} \Rightarrow \frac{16}{v} - 1 = 10v \frac{dv}{dx}$			
	$\Rightarrow \frac{1}{10} \int dx = \int \frac{v^2}{16 - v} dv \Rightarrow \frac{1}{10} \int dx = \int \left(-v - 16 + \frac{256}{16 - v} \right) dv$		M1A1√	
	$\Rightarrow \frac{x}{10} = -\frac{v^2}{2} - 16v - 256\ln 16 - v + c$		M1	
	$v = 6$ when $x = 0 \Rightarrow c = 114 + 256 \ln 10$ (703.5) limits)	(acf) (Or use of	M1A1	
	$\Rightarrow \frac{x}{10} = 114 + 256\ln 10 - 72 - 192 - 256\ln 4 = 256\ln\left(\frac{5}{2}\right)$	-150 when	M1	
	v = 12.		A 1	[0]
	$\Rightarrow x = 846 \text{ (AWRT)}$		A1	[9]