MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9795 FURTHER MATHEMATICS

9795/01
Paper 1 (Further Pure Mathematics), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Attempt at \mathbf{A}^{2} and \mathbf{A}^{3} $\mathbf{A}^{2}=\left(\begin{array}{cc} k+4 & -k \\ -1 & k+9 \end{array}\right), \mathbf{A}^{3}=\left(\begin{array}{cc} k+8 & k^{2}+7 k \\ k+7 & -4 k-27 \end{array}\right) \quad \geq 3 \text { entries of } \mathbf{A}^{3} \checkmark$ $\mathbf{A}^{3}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \Leftrightarrow k=-7 \quad$ All entries of \mathbf{A}^{3} must be \checkmark if done this way Otherwise, allow just one key element checked (since "given") $\operatorname{det}\left(\begin{array}{ll}2 & -7 \\ 1 & -3\end{array}\right)=-6-k=1 \quad$ ft $\underline{\text { numerical value consistent with their } k}$ ALTERNATIVE $\begin{gathered} \operatorname{det}\left(\mathbf{A}^{3}\right)=(\operatorname{det} \mathbf{A})^{3} \\ \mathbf{A}^{3}=\mathbf{I} \Rightarrow \operatorname{det} \mathbf{A}=1 \\ \operatorname{Det} \mathbf{A}=-6-k \\ \quad k=-7 \end{gathered}$	M1 A1 A1 B1 [4] M1 A1 B1 A1 [4]
2 (i) Noting $\alpha+\beta+\gamma=-1$ and $\alpha \beta+\beta \gamma+\gamma \alpha=7 \quad(\alpha \beta \gamma=1)$ $\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha)=-13$ GIVEN ANSWER legit. ALTERNATIVE Substitute $x=\sqrt{y}$ to find eqn. with roots $\alpha^{2}, \beta^{2}, \gamma^{2}$ $\begin{aligned} & y^{3}+13 y^{2}+51 y-1=0 \\ & \alpha^{2}+\beta^{2}+\gamma^{2}=(-13) / 1=-13 \end{aligned}$ (ii) Eqn. has at least one non-real (complex) root one real and two complex (conjugate) roots	B1 M1 A1 [3] M1 A1 A1 [3] B1 B1
3 (i) $f(r-1)-f(r)=\frac{1}{(2 r-1)^{2}}-\frac{1}{(2 r+1)^{2}}=\frac{8 r}{\left(4 r^{2}-1\right)^{2}}$ (denom${ }^{\text {r }}$. may be factorised) (ii) $\begin{aligned} & \sum_{r=1}^{n} \frac{r}{\left(4 r^{2}-1\right)^{2}}=\frac{1}{8} \sum_{r=1}^{n}\{f(r-1)-f(r)\} \quad \text { Use of this result } \ldots \\ & =\frac{1}{8} \sum_{r=1}^{n}\{(f(0)-f(1))+(f(1)-f(2))+\ldots+(f(n-1)-f(n))\} \quad \& \text { cancelling } \\ & =\frac{1}{8}\{f(0)-f(n)\}=\frac{1}{8}\left(1-\frac{1}{(2 n+1)^{2}}\right) \\ & =\frac{1}{8}\left(\frac{\left(4 n^{2}+4 n+1\right)-1}{(2 n+1)^{2}}\right) \quad \text { Common denom}{ }^{\mathrm{r}} . \text { with squaring attempted in num }{ }^{\mathrm{r}} . \\ & =\frac{n(n+1)}{2(2 n+1)^{2}} \quad \text { GIVEN ANSWER from correct working } \end{aligned}$	B1 [1] M1 M1 A1 A1

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9795	01

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9795	01

Good attempt to multiply 2 matrices of the appropriate form: $\left(\begin{array}{ll}p & p \\ p & p\end{array}\right)\left(\begin{array}{ll}q & q \\ q & q\end{array}\right)$ "Closure" noted or implied by correct product matrix $\quad=\left(\begin{array}{cc}2 p q & 2 p q \\ 2 p q & 2 p q\end{array}\right) \in S$ Statement that \times_{M} known to be associative Alt. $[(p)(q)](r)=(p)[(q)(r)]=(4 p q r)$ shown Identity is $\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)(\in S)$ $\left(\begin{array}{ll} p & p \\ p & p \end{array}\right)^{-1}=\left(\begin{array}{cc} \frac{1}{4 p} & \frac{1}{4 p} \\ \frac{1}{4 p} & \frac{1}{4 p} \end{array}\right) \quad(\in S \text { as } p \neq 0)$ \ldots and $\left(S, \times_{\mathrm{M}}\right)$ is a group since all four group axioms are satisfied (ii) Attempt to look for a self-inverse element; i.e. solving $p=\frac{1}{4 p} \mathbf{f t}$ their $(p)^{-1}$ and E $p=-\frac{1}{2}$ and noting that $H=\{\mathbf{E}, \mathbf{A}\}$ where $\mathbf{E}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right), \mathbf{A}=\left(\begin{array}{ll}-\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2}\end{array}\right)$ Looking for $\left\{\mathbf{E}, \mathbf{B}, \mathbf{B}^{2}\right\}$ where $\mathbf{B}^{3}=\mathbf{E}$; i.e. solving $\left(4 p^{3}\right)=\frac{1}{2}$ Explaining carefully that $p^{3}=\frac{1}{8} \Leftrightarrow p=\frac{1}{2}$ and no such $\mathbf{B}(\neq \mathbf{E})$ exists	M1 A1 B1 B1 B1 [5] M1 A1 M1 A1 [4]
$y=\frac{x^{2}+4 x}{2 x-1}=\frac{\frac{1}{2} x(2 x-1)+\frac{9}{4}(2 x-1)+\frac{9}{4}}{2 x-1}=\frac{1}{2} x+\frac{9}{4}+\frac{\frac{9}{4}}{2 x-1}$ For $y=\frac{1}{2} x+c$ For $c=\frac{9}{4} \quad$ (ignore remd ${ }^{\mathrm{r}}$. term) Vertical asymptote $x=\frac{1}{2}$ noted or clear from graph $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(2 x-1) \cdot(2 x+4)-\left(x^{2}+4 x\right) \cdot 2}{(2 x-1)^{2}} \quad \text { Diff }^{\mathrm{g}} . \text { and setting num }{ }^{\mathrm{r}} .=0$ Solving a quadratic in $x \quad\left(x^{2}-x-2=0\right)$ TPs at $(-1,1)$ and $(2,4)$ One each; or one for both x 's \checkmark but y 's missing Crossing-points on the axes at $(0,0)$ and $(-4,0)$	$\begin{gathered} \text { M1 } \\ \text { A1 A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 A1 } \\ \text { B1 } \\ \\ \\ \text { B1 } \\ \text { B1 } \end{gathered}$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9795	01

9 (a) Attempt at scalar triple product: $\mathbf{a} \bullet \mathbf{b} \times \mathbf{c}$ or $\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}$

$$
\text { NB } \mathbf{b} \times \mathbf{c}=\left(\begin{array}{c}
36 \\
-41 \\
145
\end{array}\right) \quad \text { and } \quad \mathbf{a} \times \mathbf{b}=\left(\begin{array}{c}
-73 \\
139 \\
97
\end{array}\right)
$$

Use of $V=\frac{1}{6}|\mathbf{a} \bullet \mathbf{b} \times \mathbf{c}|$ formula
Answer $335 \frac{1}{6}$ or $\frac{2011}{6}$
(b)
(i) $\mathbf{n}=\left(\begin{array}{c}3 \\ 1 \\ -1\end{array}\right) \times\left(\begin{array}{l}6 \\ 2 \\ 5\end{array}\right)=\left(\begin{array}{c}7 \\ -21 \\ 0\end{array}\right) \quad$ accept $\pm\left(\begin{array}{c}1 \\ -3 \\ 0\end{array}\right) \begin{aligned} & \text { etc. } \begin{array}{l}\text { Alt approach possible } \\ \text { that eliminates and } \\ \text { from the original eqn. }\end{array}\end{aligned}$
$\mathbf{r} \bullet \mathbf{n}=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right) \bullet\left(\begin{array}{c}-1 \\ 3 \\ 0\end{array}\right)=1=d \quad \quad \mathbf{f t}$ incorrect \mathbf{n}
(ii) $\begin{aligned}-x+3 y & =1 \\ x+4 y+7 z & =13\end{aligned}$
ft $1^{\text {st }}$ eqn. from (i) $\quad x=3 \lambda-1, z=2-\lambda$
$\mathbf{r}=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ 1 \\ -1\end{array}\right)$ or any other correct vector line eqn. form $\mathbf{f t}$ MUST have $\mathbf{r}=$ at the start (allow $r=$)

ALTERNATIVE

d.v. $=\left(\begin{array}{c}1 \\ -3 \\ 0\end{array}\right) \times\left(\begin{array}{l}1 \\ 4 \\ 7\end{array}\right)=\left(\begin{array}{c}21 \\ 7 \\ -7\end{array}\right) \quad$ accept $\pm\left(\begin{array}{c}3 \\ 1 \\ -1\end{array}\right)$ etc. $\quad \mathbf{f t}\left(\begin{array}{c}1 \\ -3 \\ 0\end{array}\right)$

Finding any point on the line; e.g. $(-1,0,2),(2,1,1),(5,2,0)$, etc.
Answer as above
ft point and d.v.

Syllabus

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9795	01

12 (i) $(a+i b)^{2}=2+2 i \Leftrightarrow a^{2}-b^{2}=2$ and $a b=1 \quad$ Squaring \& equating Re/Im parts $a^{2}-\frac{1}{a^{2}}-2=0 \Rightarrow a^{4}-2 a^{2}-1=0 \Rightarrow\left(a^{2}-1\right)^{2}=2$ (or by the quadratic formula)
Subst ${ }^{\text {T }}$. for b (say) and solving a quadratic in a^{2} $a=\sqrt{\sqrt{2}+1}$ (AG) MUST note that $a^{2}>0$ to explain choice of +ve sq.rt. Similarly, $b=\sqrt{\sqrt{2}-1}$ from $b^{4}+2 b^{2}-1=0$ or $b=\frac{1}{a}$
(ii)
(a) $z_{2}=-\sqrt{\sqrt{2}+1}+i \sqrt{\sqrt{2}-1}$

$$
\begin{aligned}
\arg \left(z_{2}\right) & =\pi-\tan ^{-1} \sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}} \text { Attempt incl }{ }^{\mathrm{g}} \text {. rationalising denom }{ }^{\mathrm{r}} . \\
& =\pi-\tan ^{-1}(\sqrt{2}-1)=\pi-\frac{1}{8} \pi=\frac{7}{8} \pi
\end{aligned}
$$

(b) $\arg \left(z_{2}{ }^{n}\right)=\frac{7}{8} n \pi$

$$
\begin{aligned}
& =\left(2 k+\frac{1}{4}\right) \pi \\
n & =\frac{16 k+2}{7}, \text { giving least } n=14
\end{aligned}
$$

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U - May/June 2011	9795	01

13 (i)
(a) Use of $\sin 2 x=\frac{2 t}{1+t^{2}}$ in $\frac{2}{2-\sin 2 x}$, where $t=\tan x$
$\frac{2}{2-\sin 2 x}=\frac{2}{2-\left(\frac{2 t}{1+t^{2}}\right)}=\frac{1+t^{2}}{1-t+t^{2}}$
ANSWER GIVEN
(b) $y=\tan ^{-1}\left(1-\frac{2 \tan x}{\sqrt{3}}\right) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1+\left(\frac{1-2 t}{\sqrt{3}}\right)^{2}} \times \frac{-2}{\sqrt{3}} \sec ^{2} x$

$$
\text { or } \tan y=\ldots \text { and use of implicit diffn. }
$$

$=\frac{-2}{\sqrt{3}}\left(1+t^{2}\right) \times \frac{3}{4-4 t+4 t^{2}}$
$=\frac{-\sqrt{3}}{2} \cdot \frac{1+t^{2}}{1-t+t^{2}}=\frac{-\sqrt{3}}{2} \cdot \frac{2}{2-\sin 2 x}$ so that $k=-\sqrt{3}$
(ii) (a) Use of $x=r \cos \theta, y=r \sin \theta$ (and $x^{2}+y^{2}=r^{2}$)
$\Rightarrow r^{2}=72+r^{2} \sin \theta \cos \theta$ i.e. x, y completely (and correctly) eliminated
$\Rightarrow r^{2}=\frac{144}{2-\sin 2 \theta}$ or equivalent form
$2-\sin 2 \theta \geq 1 \Rightarrow r^{2} \leq 144$ so that $r_{\text {max }}=12$
Calculus approach fine as an alternative
Then $\sin 2 \theta=1 \Rightarrow \theta=\frac{1}{4} \pi$ or $\frac{5}{4} \pi$
No $\mathbf{M} \mathbf{f t}$ from incorrect differentiation
(b) $A=\frac{1}{2} \int r^{2} \mathrm{~d} \theta=\int \frac{72}{2-\sin 2 \theta} \mathrm{~d} \theta$

$$
\begin{aligned}
& =72\left[\frac{-1}{\sqrt{3}} \tan ^{-1}\left(\frac{1-2 \tan x}{\sqrt{3}}\right)\right]_{0}^{\pi / 4} \text { Use of previous result } \\
& =\frac{72}{\sqrt{3}}\left(\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)-\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)\right) \text { or } \frac{72}{\sqrt{3}}\left(\frac{\pi}{6}-\left(-\frac{\pi}{6}\right)\right) \\
& =8 \pi \sqrt{3} \text { CAO ft their } k \text { above }
\end{aligned}
$$

Area inside C in $1^{\text {st }}$ quad. $=2 A=16 \pi \sqrt{3}$ since C is symmetric in $y=x \mathbf{f t}$

