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1  Attempt at  A2  and  A3  M1  

  
A

2 = 

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



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
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



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       ≥ 3 entries of A3 � 

 

A1 

 

  
A

3 = 








10

01
  ⇔ k = – 7         All entries of A3 must be � if done this way 

 Otherwise, allow just one key element checked (since “given”) 

 

A1 

 

  
det 









−

−

31

72
 = – 6 – k  = 1       ft numerical value consistent with their k 

 

B1 

 

    [4] 

  ALTERNATIVE    

  det(A3) = (det A)3 M1  

  A
3 = I  ⇒  det A = 1 A1  

  Det A = – 6 – k   B1  

          k = – 7  A1  

    [4] 

     

     

2 (i) Noting  α + β + γ = –1   and   αβ + βγ + γα = 7             (αβγ = 1)   B1  

  α 2 + β 2 + γ 2 = (α + β + γ)2 – 2(αβ + βγ + γα) = –13      GIVEN ANSWER legit. M1 

A1 

 

    [3] 

  ALTERNATIVE  Substitute yx =  to find eqn. with roots α 2, β 2, γ 2 M1  

                                 y3 + 13y2  + 51y – 1 = 0 A1  

                                 α 2 + β 2 + γ 2 = (–13) / 1 = –13  A1  

    [3] 

 (ii) Eqn. has  at least one non-real (complex) root B1  

                  one real and two complex (conjugate) roots B1  

    [2] 
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(i) f(r – 1) – f(r) = 
( )22
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 (denomr. may be factorised) 
 

B1 
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                        Use of this result … 

 

M1 
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   & cancelling 

 

M1 
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A1 
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
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2

)12(

1)144(

8
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    Common denomr. with squaring attempted in numr. 
 

 

 

  
= 

2)12(2

)1(

+

+

n
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         GIVEN ANSWER from correct working 
 

A1 

 

 

    [4] 
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4 (i)  

 

 y = cosh x – 1  

   

 1 Grad. of tanhx  

should be 1 
 

 O α 

  y = tanh x 

 –1 

 

 

 

 

B1 

 

 

 

 

 

B1 

 

  Curves cross twice (at x = 0 and x = α) so there are 2 roots to tanh x = cosh x – 1  

i.e.  1 + tanh x – cosh x = 0 

 

B1 

 

    [3] 

 (ii) (a) f(1) f(1.5) = 0.22… × (– 0.45…) < 0   

                                              ⇒  1 < α < 1.5 by the “Change-of-Sign” Rule 

 

B1 

 

    [1] 

     

  (b) f ′(x) = sech2x – sinh x B1 B1  

  
 Use of  xn + 1 = xn – 

)(f

)(f

n

n

x

x

′
  at least once 

 

M1 

 

   x1 = 1.25,   x2 = 1.219 625 3,                         x3 = 1.218 76  to 5 d.p. A1  

    [4] 

     

     

5  Aux.Eqn.  m2 + 1 = 0  ⇒  m = ± i  ⇒  Comp.Fn. is  yc = A cos x + B sin x  M1 

A1 

 

  For Part.Intgrl. trying   y = ax2 + bx + c   (with at least a non-zero) M1  

  

x

y

d

d
 = 2ax +b,   

2

2

d

d

x

y
 = 2a 

  

  Diffg. their  yp  to find  y′  and  y″  and subst
g. into the given d.e. M1  

  Equating terms to find a, b, c   (with at least a and c non-zero) M1  

  a = 8,  b = 0,  c = – 16;  i.e.  yp = 8x
2 – 16  A1  

  Gen.Soln. is   y = A cos x + B sin x + 8x2 – 16 

                ft their  yc + yp  provided  yc  has 2 arb. consts.  and  yp  has none 

 

B1 

 

    [7] 
    

 

 

 

× 
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6 (i) 
Good attempt to multiply 2 matrices of the appropriate form:  












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


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M1 

 

  
“Closure” noted or implied by correct product matrix          = 









pqpq

pqpq

22

22
 ∈ S   

 

A1 

 

  Statement that ×M  known to be associative 
 

                 Alt.  [(p)(q)] (r) = (p) [(q)(r)] = (4pqr) shown 

B1  

  
Identity is  





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

2

1

2

1

2

1

2

1

 (∈ S) 
 

B1 
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4

1

4

1

4

1
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  (∈ S as p ≠ 0) 

 

B1 

 

  … and  (S, ×M)  is a group since all four group axioms are satisfied  [5] 

     

 (ii) 
Attempt to look for a self-inverse element; i.e. solving  p = 

p4

1
  ft their (p) – 1 and 

E 

 

M1 

 

  
p = 

2

1
−  and noting that  H = {E, A}  where  E = 









2

1

2

1

2

1

2

1

, A = 








−−

−−

2

1

2

1

2

1

2

1

 
 

A1 

 

  Looking for  {E, B, B2}  where  B3 = E ;  i.e. solving  (4p3) = 
2

1  M1  

  Explaining carefully that  p3 = 
8

1   ⇔  p = 
2

1   and no such B (≠ E) exists A1  

    [4] 

     

     

7  
y = 
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M1 

 

              For  y = cx +
2

1                           For  c = 
4

9   (ignore remdr. term) A1 A1  

  Vertical asymptote  x = 
2

1   noted or clear from graph B1  

  

2

2

)12(

2).4()42).(12(

d

d

−

+−+−
=

x

xxxx

x

y
              Diffg. and setting num r. = 0 

 

M1 

 

  Solving a quadratic in x     (x2 – x – 2 = 0) M1  

  TPs at  (– 1, 1) and (2, 4)  One each; or one for both x’s � but y’s missing A1 A1  

  Crossing-points on the axes at  (0, 0)  and  (– 4, 0) B1  

   

 

 

 

 

 

                                                                                           General shape 

 

                                                                                            All correct 

 

 

 

 

 

 

 

 

B1 

 

B1 

 

    [11] 
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8 (i) 

No unique soln.  ⇔  

61

32

321

k

k  = 0 

 

 

M1 

 

  Gaining and solving a quadratic eqn. in k M1  

  0 = – (k2 – 8k + 15) = – (k – 3)(k – 5)  ⇒  k = 3, 5 A1  

    [3] 

 (ii) 

k = 3  ⇒  

163

9332

432

=++

=++

=++

zyx

zyx

zyx

:  
33)()(     

13)()(2

−=+⇒−

−=+⇒−×

zy

zy

13

21
    

 Substg. back and eliminating one variable; inconsistency correctly 

shown 

 

 

 

 

M1 

A1 

 

  

k = 5  ⇒  

165

9532

432

=++

=++

=++

zyx

zyx

zyx

:  
333)()(     

1)()(2

−=+⇒−

−=+⇒−×

zy

zy

13

21
    

 Substg. back and eliminating one variable; consistency correctly shown 

 

 

 

 

M1 

A1 

 

    [4] 

  ALTERNATIVE (whole qn.)   

  

3320

1610

4321

        

161

932

4321

−−

−−→

k

k

k

k     

133

122

'

2'

RRR

RRR

−=

−=    

 

 

M1 

 

  

                          

3320

1610

4321

   

−−

−−→

k

k                  or by Cramer’s Rule 

  

  

515800

1610

4321

   

2
−+−

−−→

kkk

k      

233
)2(' RkRR −−=

                   
3

2

  Final

  Final

R

R
 

 

A1 

A1 

 

  k2 – 8k + 15 = 0  for no unique solution                 k = 3,  5 M1 

A1 

 

  Noting  k = 3  ⇒  R3 =  0  0  0 | – 2   giving inconsistency B1  

  Noting  k = 5  ⇒  R3 =  0  0  0 |  0     giving consistency B1  

    [7] 

     

     

convincing 

attempt at 

Gaussian 

elimination
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9 (a) Attempt at scalar triple product:  a • b × c  or  a × b • c   

                NB  b × c = 

















−

145

41

36

     and     a × b = 















−

97

139

73

 

M1  

  Use of   V = 
6

1  | a • b × c |  formula M1  

  Answer  335
6

1   or  
6

2011  A1  

    [3] 

 

 

(b) 

(i) n = 

















−=
















×
















− 0

21

7

5

2

6

1

1

3

     accept  ± 

















−

0

3

1

 etc.   

 

M1 

A1 

 

  

 r • n = 1

0

3

1

4

1

2

=














−

•
















 = d                                ft incorrect n  

 

M1 

A1 

 

    [4] 

  
(ii) 

1374

13  

=++

=+−

zyx

yx
      Set  y = λ  ⇒                     Parametrisation attempt 

 ft 1st eqn. from (i)                  x = 3λ – 1,  z = 2 – λ 

 

M1 

 

A1 A1 

 

  

 r = 

















−

+














−

1

1

3

2

0

1

λ    or any other correct vector line eqn. form   ft 

                                         MUST have  r =  at the start (allow r = ) 

 

 

B1 

 

    [4] 

   ALTERNATIVE   

  

 d.v. = 

















−

=
















×
















−

7

7

21

7

4

1

0

3

1

     accept  ± 

















−1

1

3

 etc.       ft 

















−

0

3

1

 

 

M1 

A1 

 

   Finding any point on the line; e.g. (– 1, 0, 2),  (2, 1, 1),  (5, 2, 0),  etc. B1  

   Answer as above                   ft point and d.v. A1  

    [4] 

     

     

Alt approach possible 

that eliminates  and  

from the original eqn. 
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10 (i) cos3θ  = Re(cos3θ + i sin3θ) = Re(c + is)3                 Use of de Moivre’s Thm. M1  

             = c3 – 3cs2   = c3 – 3c(1 – c2) = 4c3 – 3c   ANSWER GIVEN A1  

    [2] 

 (ii) (a) u2 = 2c
2 – 1   and   u3 = 4c

3 – 3c B1 B1  

    [2] 

  (b) Conjecture  un = cos(nθ)  1  B1  

   Base case,  “true for  n = 0 or 1 (or 2 or 3)”,  may be taken as read   

   Assuming  un = cos(nθ)  for at least  n = k  and  n = k – 1  

 Using given r.r. to generate  uk + 1 = 2 cosθ cos(kθ) – cos([k – 1]θ) 

M1 

M1 

 

   = 2 cosθ cos(kθ) – {cos(kθ) cosθ + sin(kθ)sinθ} 

 = cosθ cos(kθ) – sinθ sin(kθ) 

M1  

   OR {cos(k + 1)θ  – cos(k – 1)θ } – cos(k – 1)θ   

   = cos([k + 1]θ) A1  

   If statement is true for  n = 0, 1, 2, …, k  (but allow assumption for one term 

only here) then it is also true for  n = k + 1. Proof follows by (strong) induction 

 

B1 

 

    [6] 

     

     

11 (i) 

In = ∫
π

6

1

0

sec t
n

 dt   = tt
n 2

6

1

0

2  
sec.sec∫ −

π

 dt        Correct splitting and use of parts 

 

M1 

 

  

    = [ ] tttnttt
nn tan.secsec)2.(tan      tan.sec .

0

3
6

1

2  

∫ −− −
−

π

dt    

 

A1 

A1 

 

  

In  = 
3

1
.

3

2
2  −









n

 – ( )1sec.sec)2( 2

6

1

0

2  
−− ∫ −

ttn
n

π

dt          Substg. for tan … 

 

 

 

  
    = 

( ) 1  

2  

3

2

−

−

n

n

 – { }
2  

)2(
−

−−
nn
IIn                                … and reverting to I’s 

 

M1 

 

  
(n – 1)In = ( ) 1

2

3

2

−

−

n

n

 + (n – 2)In – 2    ANSWER GIVEN 
 

A1 

 

    [5] 

 (ii) ( ) ( )22
2

222
tan.secsec tttyx +=+ &&      Attempted 

M1  

                 = ( ) ttt
624

sectan1sec =+  A1  

  
Use of  S = ∫ +

22
2 yxy &&π dt      with  y = 

2

1 sec2t  and their  x&   and  y&  
M1  

                 = tt
32

2

1 sec.sec.2∫ π  dt  = π I5  
A1  

    [4] 

  I1 = [ ]    tansecln tt +   

 

M1  

  
    = 1ln

3

1

3

2
ln −








+  = 

2

1 ln 3 
 

A1 

 

  Then, using the R.F.,  2 I3 = 3
2  + 

2

1 ln 3  ⇒  I3 =  3
1  + 

4

1 ln 3 M1 

A1 

 

  Using the R.F. again,  4 I5 = ( )3ln3
4

1

3

1

9

8
++  M1  

                              … leading to  S = ( )π3ln2768
144

1
+    or exact equivalent A1  

    [6] 

0

6

1
π
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12 (i) (a + ib)2 = 2 + 2i  ⇔   a2 – b2 = 2   and   ab = 1      Squaring & equating Re/Im parts M1  

  
02

1

2

2
=−−

a

a   ⇒  a4 – 2a2 – 1 = 0  ⇒  (a2 – 1)2 = 2 (or by the quadratic 

 formula) 

 Substg. for b (say) and solving a quadratic in  a2   

 

M1 

 

  
a = 12 +    (AG) MUST note that  a2 > 0 to explain choice of +ve sq.rt. 

A1  

  
Similarly,  b = 12 −    from  b4 + 2b2 – 1 = 0  or  b = 

a

1
 

M1 

A1 

 

    [5] 

 (ii) 
(a) z2 = 1212 −++− i  

  

  

 arg(z2) = 
12

12

12

12
tan

1

−

−
×

+

−
−

−

π   Attempt inclg. rationalising denomr. 

 

M1 

 

                       = ( ) ππππ
8

7

8

11
12tan =−=−−

−

 A1  

    [2] 

  (b) arg(z2
n) = πn

8

7  B1  

                        = ( )π
4

12 +k  M1  

  
                   n = 

7

216 +k
,  giving least n = 14  

 [Condone lack of convincing explanation that this IS the least such n.] 

 

A1 

 

    [3] 
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13 (i) 
(a) Use of  sin2x = 

2
1

2

t

t

+

in 
x2sin2

2

−

,  where  t = tan x 
 

M1 

 

  
 ( ) 2

2

1

2
1

1

2

2

2sin2

2

2
tt

t

x
t

t
+−

+
=

−

=

−
+

     ANSWER GIVEN 
 

A1 

 

    [2] 

  
(b) y = tan – 1  








−

3

tan2
1

x

  ⇒  ( ) x
x

y

t

2

2

3

21

sec
3

2

1

1

d

d −
×

+

=
−

  

                                                           or  tan y = …   and use of implicit diffn. 

 

M1 

A1 

 

  
          = ( )

2

2

444

3
1

3

2

tt

t

+−

×+
−

  
 

M1 

 

  
                            = 

2

2

1

1
.

2

3

tt

t

+−

+−
 = 

x2sin2

2
.

2

3

−

−

  so that  k = 3−  
 

A1 

 

    [4] 

 (ii) (a) Use of  x = r cosθ , y = r sinθ  (and  x2 + y2 = r2)   M1  

   ⇒  r2 = 72 + r2 sinθ cosθ    i.e. x, y completely (and correctly) eliminated M1  

  
 ⇒  r2 = 

θ2sin2

144

−

   or equivalent form 
 

A1 

 

   2 – sin 2θ  ≥ 1  ⇒  r2 ≤ 144    so that  rmax = 12 

 Calculus approach fine as an alternative 

M1 

A1 

 

   Then  sin 2θ = 1  ⇒  θ = π
4

1  or π
4

5  

 No M ft from incorrect differentiation 

M1 

A1 

 

    [7] 

  
(b) A = ∫ 2

2

1
r dθ  = ∫

− θ2sin2

72
 dθ   

 

M1 

 

  

                                = 72

0

4/

3

tan21
tan

3

1 1

π
















 −−
−

x

     Use of previous result 

 

M1 

 

  
                   = ( ) ( )( )

3

11

3

11
tantan

3

72
−−

−−

   or   















−−
663

72 ππ

  
 

A1 

 

                                  = 38π    CAO ft their k above A1  

   Area inside C in 1st quad. = 2A = 316π  since C is symmetric in  y = x  ft B1  

    [5] 

     

 




