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1 The equation x3 + 2x2 + x − 7 = 0 has roots α, β and γ . Use the substitution y = 1 + x2 to find an

equation, with integer coefficients, whose roots are 1 + α2, 1 + β2 and 1 + γ 2. [4]

2 Use the method of differences to express

n

∑
r=1

1

4r2 − 1
in terms of n, and hence deduce the sum of the

infinite series

1

3
+ 1

15
+ 1

35
+ . . . + 1

4n2 − 1
+ . . . . [5]

3 The points A (1, 3), B (4, 36) and C (9, 151) lie on the curve with equation y = p + qx + rx2.

(i) Using this information, write down three simultaneous equations in p, q and r. [1]

(ii) Re-write this system of equations in the matrix form Cx = a, where C is a 3 × 3 matrix, x is an

unknown vector, and a is a fixed vector. [1]

(iii) By finding C−1, determine the values of p, q and r. [4]

4 (i) Using the definitions of sinh and cosh in terms of exponentials, prove that

cosh A cosh B + sinh A sinh B ≡ cosh(A + B). [1]
(ii) Solve the equation 5 cosh x + 3 sinh x = 12, giving your answers in the form ln(p ± q

√
2) for

rational numbers p and q to be determined. [5]

5 A curve has equation y = x2 + 5x − 6

x + 3
for x ≠ −3.

(i) Show that
dy

dx
> 1 at all points on the curve. [3]

(ii) Sketch the curve, justifying all significant features. [8]

6 (i) The set S consists of all 2 × 2 matrices of the form ( 1 n

0 1
), where n ∈ ?.

(a) Show that S, under the operation of matrix multiplication, forms a group G. [You may

assume that matrix multiplication is associative.] [3]

(b) State, giving a reason, whether G is abelian. [1]

(c) The group H is the set ? together with the operation of addition. Explain why G is

isomorphic to H. [1]

(ii) The plane transformation T is given by the matrix ( 1 n

0 1
), where n is a non-zero integer.

Describe T fully. [3]
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7 A curve C has polar equation r = 2 + cos θ for −π < θ ≤ π.

(i) The point P on C corresponds to θ = α, and the point Q on C is such that POQ is a straight line,

where O is the pole. Show that the length PQ is independent of α. [3]

(ii) Find, in an exact form, the area of the region enclosed by C. [3]

(iii) Show that (x2 + y2 − x)2 = 4(x2 + y2) is a cartesian equation for C. Identify the coordinates of the

point which is included in this cartesian equation but is not on C. [3]

8 For the differential equation t2 d2x

dt2
− 4t

dx

dt
+ (6 − 4t2)x = 0, use the substitution x = t2u to find a

differential equation involving t and u only. Hence solve the above differential equation, given that

x = e − 1 and
dx

dt
= 4e when t = 1. [10]

9 Three non-collinear points A, B and C have position vectors a, b and c respectively, relative to the

origin O. The plane through A, B and C is denoted by Π .

(i) (a) Prove that the area of triangle ABC is 1
2
|a × b + b × c + c × a |. [3]

(b) Describe the significance of the vector a × b + b × c + c × a in relation to Π . [1]

(ii) (a) In the case when a = ai , b = bj and c = ck, where a, b and c are positive scalar constants,

determine the equation of Π in the form r.n = d, where the components of n and the value

of the scalar constant d are to be given in terms of a, b and c. [4]

(b) Deduce the shortest distance from the origin O to Π in this case. [2]

10 One root of the equation ß5 − 1 = 0 is the complex number ω = e
2
5
πi

.

(i) Show that

(a) ω5 = 1, [1]

(b) ω + ω2 + ω3 + ω4 = −1, [2]

(c) ω + ω4 = 2 cos 2
5
π, and write down a similar expression for ω2 + ω3. [3]

(ii) Using these results, find the values of cos 2
5
π + cos 4

5
π and cos 2

5
π × cos 4

5
π, and deduce a quadratic

equation, with integer coefficients, which has roots

cos 2
5
π and cos 4

5
π. [5]
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11 (i) At all points (x, y) on the curve C,
dy

dx
+ xy = 0.

(a) Prove by induction that, for all integers n ≥ 1,

dn+1y

dxn+1
+ x

dny

dxn + n
dn−1y

dxn−1
= 0

where
d0y

dx0
= y. [5]

(b) Given that y = 1 when x = 0, determine the Maclaurin expansion of y in ascending powers

of x, up to and including the term in x6. [5]

(ii) Solve the differential equation
dy

dx
+ xy = 0 given that y = 1 when x = 0. [4]

(iii) Given that Z ∼ N(0, 1), use your answers to parts (i) and (ii) to find an approximation, to

4 decimal places, to the probability P(Z ≤ 1). [4]

[Note that the probability density function of the standard normal distribution is f(ß) = 1√
2π

e
−1

2
ß2

.]
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12 (i) Let I
n
= ä xn√

x2 + 1
dx, for integers n ≥ 0.

By writing
xn√

x2 + 1
as xn−1 × x√

x2 + 1
, or otherwise, show that, for n ≥ 2,

nI
n
= xn−1

√
x2 + 1 − (n − 1)I

n−2
. [5]

(ii) The diagram shows a sketch of the hyperbola H with equation
x2

4
− y2

16
= 1.

O
x

y

(a) Find the coordinates of the points where H crosses the x-axis. [1]

(b) The curve J has parametric equations x = 2 cosh θ, y = 4 sinh θ, for θ ≥ 0. Show that these

parametric equations satisfy the cartesian equation of H, and indicate on a copy of the above

diagram which part of H is J. [3]

(c) The arc of the curve J between the points where x = 2 and x = 34 is rotated once completely

about the x-axis to form a surface of revolution with area S. Show that

S = 16πä
β

α

sinh θ
√

5 cosh2 θ − 1 dθ

for suitable constants α and β . [4]

(d) Use the substitution u2 = 5 cosh2 θ − 1 to show that

S = 8π√
5
(644

√
5 − ln(9 + 4

√
5)). [9]
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