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9 Crystal Structures _________________________________  
 
Supporting interactive 3D images of crystal structures and more advanced material may 
be found at:http://www-teach.ch.cam.ac.uk/links/3Dindex.html   
 
A Introduction 
 
Chemists are inspired by beauty and have long been fascinated by crystals, including 
snowflakes, minerals and gemstones. 
 

   
 
 Fig. 1 A snowflake  Fig.2 Fluorite 
 

   
 
 Fig. 3 Topaz Fig. 4 Fool’s gold 
 
Fig. 1 Snowflakes commonly show six-fold symmetry. It is no coincidence that when 
water freezes, it forms a hexagonal lattice. [Image from www.SnowCrystals.com.] 
Fig. 2 Fluorite is calcium fluoride, CaF2. It is the compound chosen to exemplify its 
crystal structure type. Its symmetry at the atomic level is apparent from its crystalline 
form. [Image from “An illustrated guide to Rocks and Minerals” by Michael O’Donoghue, 
Thunder Bay Press.]  

www.XtremePapers.com
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Fig. 3 Topaz has a complex structure: it is an aluminosilicate containing fluoride and 
hydroxide ions.  
 
Fig. 4 Fool’s gold is also known as pyrite and has formula FeS2  (containing the Fe2+ and 
−S−S− ions). The ions, perhaps not surprisingly given the picture, arrange themselves 
into a cubic lattice.  
[Figures 3 and 4 from “Rocks and Minerals of the World: an illustrated encyclopedia” by 
Rudolf Ďud’a and Luboš Rejl, Tiger Books.] 
 
The first attempt to relate the external shape of a crystal to its structure at the molecular 
level was made in a study of snowflakes by Johannes Kepler, in 1611. He related the 
six-fold symmetry of the snowflake to the hexagon formed when packing equally-sized 
balls into a densely packed layer. This work was extended by Robert Hooke who 
realised that balls could stack to form the different shapes that crystals were observed to 
adopt. 
 
One of the triumphs of twentieth century science was the development by Max von Laue 
and Lawrence Bragg of the theory and practice of x-ray diffraction and how, from these 
experiments, crystal structures could be determined. One of the first x-ray diffraction 
photographs, taken in 1912 of zinc blende (ZnS), is shown below.  
 

 
 
Fig. 5 One of the ‘Laue diagrams’ published by Friedrich, Knipping and Laue in 1912. 
This finally demonstrated the existence of internal atomic regularity in crystals and its 
relationship to external symmetry. [Image from “The Basics of Crystallography and 
Diffraction” by Christopher Hammond, OUP.] 
 
The technique was made most famous 40 years later by Rosalind Franklin and 
Raymond Gosling whose x-ray photograph of DNA in May 1952 led to the elucidation of 
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the double helix structure of DNA by Francis Crick and James Watson in 1953. Their 
x-ray photograph of DNA is shown below. 
 

 
 
Fig. 6 X-ray photograph of DNA taken by Rosalind Franklin and Raymond Gosling in 
1952 and published in the 25 April issue of Nature, vol 171, p737, 1953.  
 
 
B  Close-packing 
 
The simplest place to start with crystal structures is how to pack together as tightly as 
possible lots of atoms of the same size. We assume atoms to be spherical in shape, 
which keeps the problem simple. So it is rather like packing oranges into a box. First, if 
we consider balls sitting on a plane in a single layer we find that the most neighbours 
that a sphere can be touching simultaneously is six, as was suggested by Kepler in 1611 
(see earlier). This can easily be appreciated by considering pennies in contact on the 
surface of a table. 
 
With all the circles/balls being of equal sides the centres of all the objects form a grid of 
equilateral triangles sharing their edges with their neighbours. Given that the internal 
angle in an equilateral triangle is 60° one can see the origin of the hexagonal symmetry. 
The close packing of spheres in a plane is shown in Figure 7.  
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Fig. 7 The close-packing of spherical balls (or circles) in a plane. By considering one of 
the two central balls it is evident that there are six neighbours in contact in a hexagonal 
arrangement. 
 
The above diagram shows close-packing in two dimensions. The next problem is to 
consider the third dimension. The most efficient way to pack together layers of these 
atoms is for one plane to nestle into the gaps in the plane below. By looking along a row 
of circles above you can see that there are twice as many gaps between them as there 
are circles. When placing a plane of atoms on top of a close-packed layer only there is 
only space for half of these gaps to have an atom right on top of it. In this way the gaps 
can be considered to be of two types, as shown below. 
 

 
 
Fig. 8 A close-packed layer of atoms, showing two types of hole in the layer, labelled ‘B’ 
and ‘C’. [Image from “The Basics of Crystallography and Diffraction” by Christopher 
Hammond, OUP.] 
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So a plane of close-packed atoms from above could sit on the holes labelled ‘B’ or the 
holes labelled ‘C’ but not both at once. Clearly the two different possibilities for the 
second plane are equivalent. However, when considering where to place a third plane of 
atoms, there really is a choice. If the second plane of atoms were to sit on the ‘B’ holes 
then the atoms in the third plane could either rest directly above the atoms in the first 
plane (in the ‘A’ position) or they could reside above the ‘C’ holes. These two 
possibilities are both equally efficient at filling space as the ‘B’ and ‘C’ holes are the 
same (as is evident from Figure 7). They are not, however, equivalent from the point of 
view of symmetry. But since both of the above methods of stacking planes of close-
packed atoms are equally efficient, both are seen in nature – in metallic crystals.  
The two types are described separately below.  
 
1. Hexagonal close-packing 
 
The type where atoms only occupy the ‘A’ and ‘B’ positions in an alternating sequence is 
known as ‘AB’ packing or hexagonal close-packing, relating to the hexagonal symmetry 
discussed earlier. This arrangement is illustrated in the Figure 9 below. The atoms are 
shown at half actual radii, ie not actually in contact, to make the structure easier to 
interpret. While all of the atoms are identical, the atoms in alternating (‘B’) layers are 
shown in green to make the packing arrangement clear. Magnesium is an example of a 
metal that adopts this structure. 
 

 
 
Fig. 9 The ‘AB’ close-packing arrangement of hexagonal close-packing. The ‘B’ layers 
are shown in green, even though all the atoms in the structure are actually identical.  
The bonds in the Figure connect atoms that are in contact in the structure. 
 
Considering the central grey atom in Figure 9 it is evident that an atom in a hexagonal 
close-packed lattice will be in contact with 12 neighbours: six in the hexagonal 
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arrangement in the plane, and three in an equilateral triangle arrangement in the plane 
above and the plane below. The number of nearest neighbours with which an atom is in 
contact is known as the coordination number. 
 
2. Cubic close-packing 
 
The type where atoms occupy the ‘A’, ‘B’ and ‘C’ positions in that sequence is known as 
‘ABC’ packing, or cubic close-packing. It is not particularly obvious at first that there is 
cubic symmetry in ‘ABC’ packing; we shall explore this in the next section.  
This arrangement is illustrated in the Figure below. Again, the atoms are shown not 
actually in contact to make the structure easier to see. Similarly, despite the colour 
coding of the ‘A’, ‘B’ and ‘C’ layers all of the atoms are identical. Copper is an example 
of a metal that adopts this structure. 
 

 
 
Fig. 10 The ‘ABC’ close-packing arrangement of cubic close-packing. The ‘A’, ‘B’ and ‘C’ 
layers are colour coded, even though all the atoms in the structure are actually identical. 
The bonds in the Figure connect atoms that are in contact in the structure. 
 
In cubic close-packing there is also a coordination number of twelve. This isn’t surprising 
in view of the equal efficiency of the lattices of filling space. The arrangement is similar 
to the one in the hexagonal close-packing case, except the triangles of atoms in contact 
in the layers above and below are at a different orientation to each other (rotated by 
60°). 
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C The unit cell 
 
In a high quality crystal the structure is highly ordered and repeats itself countless times. 
The most convenient way to discuss the structure is to consider the smallest repeating 
unit of the structure that contains all the symmetry of the crystal. This is known as the 
unit cell. A crystal can be built up by stacking lots of unit cells together side-by-side.  
The only unit cells we shall consider here are those of cubic symmetry as these are the 
geometrically the most straightforward and the easiest to visualise. 
 

 
 
Fig. 11 The cubic close-packed unit cell, with colour-coded close-packed layers.  
The black wireframe depicts the cubic region that repeats itself in the structure.  
The coloured bonds in the Figure connect atoms that are in contact in the structure. 
In the last section it was pointed out that the ‘ABC’ type of close-packing has cubic 
symmetry. Indeed the unit cell that describes the structure is cubic, and is shown in 
Figure 11. Again, the atoms are shown not actually in contact and the close-packed 
layers are colour coded. The unit cell cube is superimposed in black. The lines of the 
cube do not represent bonds but rather the region of space that repeats itself in the 
lattice. Note that the atoms below are just rotated in space compared to the earlier 
depiction of the cubic close-packed lattice.  
 
Within the unit cell in Figure 11 we see atoms in one of two types of position. Atoms are 
either sitting on the corner of the cube or else they are in the centre of one of the faces. 
The eight corners and six faces are all associated with an atom. Each atom in a corner 
position is actually shared between the eight adjacent cubes that meet at that corner. 
These eight cubes are equivalent and so one eighth of a corner atom is within the unit 
cell. As there are eight corners on a cube that leads to a total cell occupancy of 1 for the 
corner atoms. Each atom at the centre of a face is shared with one other cube and so 
one half of a face-centre atom is within the unit cell. As there are six faces on a cube, 
there is a cell occupancy of 3 for the face-centre atoms. The total cell occupancy for the 
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cubic close-packed unit cell is therefore 4, despite the fact that 14 atoms are visible in 
Figure 11. 
 
 
D Compounds 
 
The picture is more complicated in compounds because, with more than one element 
involved, there is more than one size of atom. The lattices for compounds that we 
encounter are commonly ionic (or considered to be ionic) and so the atoms involved will 
be referred to as ions from now on. A convenient way of considering the problem is for 
one ion to fit into the gaps of a lattice formed by the oppositely charged ion. Such an 
arrangement maximises the contact between oppositely charged ions, providing 
attractive forces, and minimises the contact between similarly charged ions, minimising 
the repulsive forces. In this way ionic compounds achieve the highest possible lattice 
energy and therefore the maximum possible energetic stability. 
 
So we need to consider the gaps in a lattice of ions. One way of imagining the gaps, or 
holes, in a lattice is to refer back to Figure 8. Let us imagine that there is a second layer 
of ions above the ‘A’ layer (of the same type as the ‘A’ layer ions) that are all sitting on 
the ‘B’ gaps. In this picture we can find two types of hole in the lattice.  
 
1. Tetrahedral holes 
 
In Figure 8, below each ion in the ‘B’ layer there is a small hole. The centre of this hole is 
slightly above the level of the centres of the ‘A’ ions. Such a hole is surrounded by four 
neighbours – three ‘A’ ions arranged as an equilateral triangle just beneath and a ‘B’ ion 
immediately above. Because those ‘A’ and ‘B’ ions are all an equal distance from each 
other, their centres are at the corners of a tetrahedron, and so the hole is known as a 
tetrahedral hole.  
An ion residing in such a hole will therefore have four nearest-neighbour ions of the 
other type. Since every ion in a close-packed lattice can be considered to be in a plane 
and fitting into a hole on the plane on either side, then every ion has a tetrahedral hole 
associated with it on either side. Therefore there are twice as many tetrahedral holes in 
a close-packed lattice as there are ions. An ion occupying a tetrahedral hole is shown in 
the Figure below. 
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Fig. 12 Non-metal ion (shown in yellow) occupying the tetrahedral hole between four 
metal ions (shown in grey). The metal ions are nominally close-packed though in fact are 
not in contact due to the size of the non-metal ion. The black wireframe connects the 
centres of the four metal ions, illustrating the tetrahedral symmetry of the hole. 
 
Let’s assume that the grey ions are metal cations and the yellow ion is a non-metal 
anion. Three of the four metal cations can be considered to be in one close-packed layer 
with the fourth one in the adjacent layer. The non-metal ion is occupying the tetrahedral 
hole just above the layer with the three metal ions. Since the non-metal ion is larger than 
the hole itself it has forced the metal ions apart. Ions fitting into such holes are in fact 
larger than the holes for this reason: since the metal ions are of like charges, and like-
charges repel, the added size of the non-metal ion compared to the hole reduces the 
electrostatic repulsion between the metal ions. 
 
2. Octahedral holes 
 
Going back to Figure 8 again, assuming there are ions in the ‘A’ and ‘B’ positions, we 
can also identify octahedral holes in the lattice. In this case the octahedral holes are the 
holes labelled ‘C’. These are not quite so easy to see. The centre of the hole is half way 
between the ‘A’ and ‘B’ planes. Beneath it there is an equilateral triangle of ‘A’ ions and 
above it is an equilateral triangle of ‘B’ ions. The triangles have different orientations: 
one rotated 60° relative to the other. However, the corners of two such triangles connect 
together to form a regular octahedron. An ion inside an octahedral hole of counter-ions 
is shown in Figure 13. 
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Fig. 13 Metal ion (shown in grey) occupying the octahedral hole between six non-metal 
ions (shown in green). The non-metal ions are nominally close-packed though in fact are 
not in contact due to the size of the non-metal ion. The black wireframe connects the 
centres of the six non-metal ions, illustrating the octahedral symmetry of the hole. 
 
In the Figure above it is apparent how the octahedral hole relates to close-packed layers 
by considering the three non-metal ions above and to the left of the central metal ion to 
be in one close-packed layer and the three bottom-right ions to be of the adjacent close-
packed layer of non-metal ions. Each group of three ions forms an equilateral triangle 
rotated 60° relative to the other. 
 
An ion residing in such a hole will therefore have six nearest-neighbour ions of the other 
type. Referring back to Figure 8, since every ‘C’ hole in this model is an octahedral hole, 
and since inspection along rows of ions reveals that there is an equal number of ‘C’ 
holes compared to ions in a row, then there is the same number of octahedral holes in a 
close-packed lattice as there are ions. 
 
Now that we have considered occupying tetrahedral and octahedral holes in close-
packed lattices with counter-ions to form ionic compounds, we can go on to consider a 
couple of classic examples. 
 
3. Sodium chloride, NaCl 
 
In the sodium chloride lattice there is a 1:1 ratio (stoichiometry) between the two types of 
ion. The lattice can be considered as a close-packed arrangement of one type of ion 
with the other type of ion occupying all the octahedral holes in the lattice. This is 
consistent with the ratio of octahedral holes to ions arrived at earlier. The structure is 
illustrated in Figure 14. 
 



 

 
80 

Cambridge Pre-U Additional Support Material 

 
 
Figure 14 The unit cell of the sodium chloride lattice. The green ions are chloride ions 
and the grey ions are sodium ions. In this view the close-packed layers of the chloride 
ions are clearly visible. The bonds connect the ions that are in contact in the structure. 
 
The symmetry of the above structure is very high. Indeed the sodium and chloride ions 
are in fact in equivalent lattices: the lattice can equally be considered as a close-packed 
lattice of sodium ions with chloride ions in all the octahedral holes. By considering a unit 
cell displaced by half of a cell length, a similar cell emerges but with the two types of ion 
having exchanged position in the cell. 
 
By considering the central sodium ion in the unit cell it is apparent that the ions are 
sitting in octahedral holes: it has six nearest neighbours chloride ions which are 
arranged along the plus and minus directions of the x, y and z axes, assuming they are 
drawn along the bonds connecting the ion to the neighbours with which it is in contact. 
This is made clear in Figure 15. 
 
It is unfortunate that only one ion in the unit cell for NaCl has all six of its nearest 
neighbours visible in the cell. However, when considering another of the sodium ions, 
which are all half-way along the edges of the unit cell cube, four of its nearest-neighbour 
chloride ions are visible in the cell. These ions can be found along the x, y and z axes 
(as defined in the last paragraph) and with a bit of imagination it can be seen that the 
other two nearest neighbours will lie in adjacent unit cells, and that therefore all the 
sodium ions are in octahedral holes. 
 
Similarly, consideration of the chloride ions in the unit cell, which are at the corner and 
face-centre positions, reveals that they are all in octahedral holes of sodium ions. In the 
case of the corner chlorides, only three of the nearest-neighbour sodium ions are visible 
in the unit cell, but these are along the x, y and z axes; it is obvious by symmetry that 
there are three other nearest neighbours in adjacent unit cells, forming an octahedral 
arrangement. In the case of the face-centre chlorides, five of the nearest-neighbour 
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sodium ions are visible in the unit; it is clear that the sixth neighbouring sodium ion is in 
the adjacent unit cell, forming an octahedral arrangement.   
 
Now that we have established that both sets of ions are in octahedral holes we can 
confirm that both ions are 6-coordinate, ie they each have six nearest neighbours. The 
fact that both ions have the same coordination number is consistent with their 1:1 
stoichiometry in the compound. 
 

 
 
Figure 15 The unit cell for NaCl showing the octahedral coordination around the central 
ion. [Image adapted from “The Basics of Crystallography and Diffraction” by Christopher 
Hammond, OUP.] 
 
It is good practice to consider the cell occupancy of each type of ion. The chloride ions in 
Figure 14 occupy the cubic-close-packed positions and so, according to the discussion 
in the Unit Cell section, have a cell occupancy of 4 (from the calculation (8 × 1/8) + (6 × 
1/2)). As for the sodium ions they occupy the body-centre of the cube and the edge-
centre positions. The edge-centre ions are shared by four unit cells, and since the cubes 
are equivalent each ion has an occupancy of 1/4. Since a cube has 12 edges, the total 
cell occupancy of sodium ions is (12 × 1/4) + 1 = 4. The sodium and chloride ions 
therefore have the same cell occupancy of 4, which is consistent with their 1:1 
stoichiometry in the compound. 
 
4. Fluorite, CaF2 
 
In the fluorite (calcium fluoride) lattice there is a 1:2 stoichiometry between the two types 
of ion. The lattice can be considered as a close-packed arrangement of calcium ions 
with the fluoride ions occupying all the tetrahedral holes in the lattice. This is consistent 
with the ratio of tetrahedral holes to ions arrived at earlier. The structure is illustrated in 
Figure 16. 
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Figure 16 The unit cell of the fluorite (CaF2) lattice. The grey ions are calcium ions and 
the yellow ions are fluoride ions. The blue bonds connect the ions that are in contact in 
the structure. The black wireframe depicts the cubic region that repeats itself in the 
structure. 
 
Inspection of the yellow fluoride ions shows that they have four nearest neighbours (the 
blue bonds indicate which ions in the structure are in contact with them). It may not be 
obvious that these four neighbours are in a tetrahedral arrangement; this symmetry can 
be confirmed by thinking of the unit cell divided up into eight equal cubes, or octants. 
The cell length of the octant is half that of the unit cell. In three dimensions then the 
octant has a volume of (1/2)3 = 1/8 of the unit cell. In each of these octants four of the 
eight corners have calcium ions at the corners, as shown in Figure 17 below.  
By symmetry the fluoride ion must be at the centre of the cube: since it is in contact with 
all four calcium ions, the distances between the fluoride ion and the calcium ions must 
be the same. 
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Fig. 17 The tetrahedral hole within an octant of the fluorite unit cell. X marks the centre 
of the hole and the centre of the octant. The arrangement of the four calcium ions at the 
alternating corners of a cube gives a tetrahedral arrangement: the distances between all 
four calcium ions are equal, by symmetry, which defines the tetrahedron. 
 
A tetrahedral hole shown within the fluorite unit cell is given in the Figure below. 
 

 
 
Fig. 18 The unit cell for CaF2 showing the tetrahedral coordination around one of the 
fluoride ions. [Image adapted from “The Basics of Crystallography and Diffraction” by 
Christopher Hammond, OUP.] 
 
Since every corner calcium ion is in contact with a fluoride ion in the unit cell, and since 
each corner calcium ion is shared between eight unit cells, it follows that the corner 
calcium ions have eight nearest neighbour fluoride ions, and therefore a coordination 
number of eight.  
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In Figure 18 above, it is apparent, by symmetry, that the calcium ion at the centre of the 
top face of the unit cell has four fluoride nearest neighbours in the unit cell – one in each 
of the four top octants. Since every face-centre calcium ion is shared between two unit 
cells, then by symmetry each of these face-centre calcium ions, like the corner calcium 
ions, has a coordination number of eight. 
 
In summary, the fluoride ions have a coordination number of 4 and the calcium ions 
have a coordination number of 8. This is consistent with the 2:1 stoichiometry of the 
compound. [You may also be able to see that the calcium ions occupy cubic holes, half 
of which are occupied.] 
 
It is good practice to consider the cell occupancy of each type of ion. The calcium ions 
occupy the cubic-close-packed positions and so, according to the discussion in the Unit 
Cell section, have a cell occupancy of 4 (from the calculation (8 × 1/8) + (6 × 1/2)). As for 
the fluoride ions they are all within the body of the cube and so have a cell occupancy of 
8. This 1:2 ratio of cell occupancy is consistent with their 1:2 stoichiometry in the 
compound. 
 
 
E  Sample exercises 
 
1. This question is about the earliest general study of crystal structures 
 
The first person to consider the structure of crystals as a general problem was Robert 
Hooke. The image below is from Scheme VII in his book Micrographia, published in 
1665. Inspired by the regular shapes of crystalline specimens that he examined with his 
microscope, he proposed that these could arise from the packing together of “a 
company of bullets” as shown in his sketches A to L below. These are analogous to the 
unit cells that crystallographers refer to today. 
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(a) All of the packing arrangements A to L can be considered to be close-packed within 
the plane of the paper with one exception. Which is the exception? 

 
(b) Of the unit cells above, which one shows the greatest symmetry with respect to 

rotation? 
 
(c) Calculate, in two dimensions, the percentage of space filled by the bullets in 

arrangement L. 
 
2. This question is about gold nanoparticles 
 
UK scientists have found a way to target cancer with gold (Photochemical and 
Photobiological Sciences, 2006). 
 
Gold crystallises in the arrangement shown below. 
 

 
 
The above structure is known as a unit cell. Running perpendicular to the body-
diagonals in the unit cell are the close-packed layers. These are shown with colour-
coding in the representation below. 
 

 
 
An anti-cancer drug is bound to the gold nanoparticle. The drug-nanoparticle complex is 
attracted to cancer cells. In the presence of light, the cancer drug excites oxygen 
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molecules to a reactive form known as ‘singlet oxygen’, which causes apoptosis (‘cell 
suicide’) of the cancer cells. 
 
(a) Gold is unusual in being made up of a single isotope, Au-197. Write down the 

number of protons, neutrons and electrons in an atom of Au-197. [A periodic table 
is available in the data booklet.] 

 
(b) If a gold nanoparticle contains a million gold atoms, calculate its mass. [Hint: you 

will need Avogadro’s number, which is in the data booklet.] 
 
(c) Given that the radius of a gold atom is 0.135 nm (1 nm = 10-9 m), calculate the 

number of gold atoms in a gold nanoparticle that has dimensions 10 nm × 10 nm × 
10 nm. Assume that 74% of the volume of the nanoparticle is taken up by spherical 
gold atoms. (The other 26% of the volume is the spaces between the atoms.) The 
volume of a sphere is 33

4 rπ  where r is the radius. [Hint: calculate the volume of 

the nanoparticle occupied by gold atoms, and the volume of one gold atom.] 
 
(d) What is the name of the particular type of structure adopted by gold crystals? 
 
(e) Given that atoms are located at the corners of the unit cell and in the centre of the 

faces, calculate the total number of atoms within the cell. [Hint: remember that the 
corners of the unit cell are in the centres of the atoms, so not all the atom is actually 
inside the cell.] 

 
(f) Within the bulk of a gold nanoparticle how many neighbouring atoms are in contact 

with a gold atom? 
 
(g) In the figure above, the close-packed layers are colour-coded. There is more than 

one direction in which the close-packed layer planes can be shown to be 
propagating. Given that the close-packed planes are perpendicular to a body-
diagonal axis in the cube [a body-diagonal axis passes through two corners and the 
centre of the cube] deduce in how many different directions the close-packed layers 
can be drawn. 
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Sample question 

 
 




