

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9791 CHEMISTRY

9791/03

Paper 3 (Part B Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2010		03

Question Number	Expected Answer	Max Marks	Rationale
1 (a) (i)	(A and B) $H^+ + CO_3^{2-} \rightarrow HCO_3^{-}$	1	1/2 for overall equation
(ii)	(C and D) $HCO_3^- + H^+ \rightarrow H_2O + CO_2$	1	1/2 for both non-ionic
(b) (i)	methyl yellow	1	
(ii)	pK_a of indicator matches pH change at equivalence	1	allow pK_a on vertical section of graph owtte
(iii)	from Yellow to Red	1	
(c)	$\begin{array}{l} 18.8 \times 0.200 \ / \ 1000 = 3.76 \times 10^{-3} \ \text{mol of HNO}_3 \\ \text{so amount Na}_2\text{CO}_3 = 3.76 \times 10^{-3} \ / \ 2 = 1.88 \times 10^{-3} \ \text{mol of so conc} = 1.88 \times 10^{-3} \times 1000 \ / \ 20 = 0.094 \ \text{mol dm}^{-3} \\ = 0.094 \times 106 = 9.964 \ \text{g dm}^{-3} \end{array}$	1 1 1	allow 9.96 do not allow 10/10.0 ecf ecf
(d) (i)	$H_2O \rightleftharpoons H^+ + OH^- / 2H_2O \rightleftharpoons H_3O^+ + OH^-$	1	
(ii)	$K_c = [H^+][OH^-]/[H_2O]$ [H ₂ O] const negligible dissociation / equilibrium left	1 1 1	allow water is in large excess
(iii)	$[H^+] = \sqrt{51.3 \times 10^{-14}} = 7.16 \times 10^{-7} \text{ (mol dm}^{-3}\text{)}$ pH = -log 7.16 × 10 ⁻⁷ = 6.15	1 1+1	allow 6.14
(iv)	(endothermic) [H ⁺] higher at higher temperature so equilibrium moves right with increased temperature / increased temperature favours endothermic change	1 1	allow ecf from (d)(iii)

	Page 3	Mark Scheme:		ion	Syllabus	Paper	
		Pre-U – Ma	ay/June 2010		9791	03	
(e)	5 × 1 / 1000 = 5 × 10 ⁻³ mol of H		1				
	$0.1 \times 1.00 \times 10^{-4} = 1 \times 10^{-5} \text{ mol}$ $1 \times 10^{-5} + 5 \times 10^{-3} \text{ in } 105 \text{ cm}^{3}$ $= 5.01 \times 10^{-3} / 0.105 = 0.0477 \text{ n}$		1				
	pH = -log 0.0477 = 1.32		1	1.32 = 4 m	arks		
	calculation of initial pH = 4.77 after addition of HCl; 0.01 + 5 ×	10 ⁻³ = 0.015 mol	1				
	= $0.015 \times 1000 / 105 = 0.143$ m and $0.01 - 5 \times 10^{-3} = 0.005$ mo	lol dm⁻³ CH₃COOH	1				
	= 0.005 × 1000 / 105 = 0.0476 pH = pK _a – log [acid] / [salt]	mol dm ⁻³ CH ₃ COO ⁻	1				
	= 4.77 – log 0.143 / 0.0476	= 4.17	1	4.17 = 4 m	arks		
			[25]				

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2010	9791	03

2 (a)) (i)	high temperature and ethanol as solvent	2	one mark for each solvent and third mark for any appropriate mention of temperature
	(ii)	(lower temperature) and water as solvent	1	
(b)	(b) (i) molecule with <u>non-superimposable mirror-image</u> form / molecule with <u>4 different groups</u> attached to the <u>same (C)</u> atom / no plane of symmetry		1	do not allow molecules allow atoms in place of groups
	(ii) equimolar mixture of two enantiomers / optical isomers		1	
	(iii)	<u>stereoisomers</u> that are <u>not enantiomers</u> / non- superimposable mirror images	1	
	(iv)	$\begin{array}{cccc} Br & Br \\ & & \\ H_{3}C & H_{2}CH_{3} & H_{3}C \cdot CH_{2} \\ \end{array} CH_{2}CH_{3} & H_{3}C \cdot CH_{2} \\ \end{array} CH_{3} \\ \end{array}$	2	
(c)) (i)	$HO_{H_3C} \xrightarrow{Br_1}_{CH_2CH_3} \xrightarrow{OH}_{H_3C} \xrightarrow{OH}_{H_1 \text{ for inverted}}_{H_1 \text{ for inverted}}$	4	
	(ii)	S-(+)-butan-2-ol	2	R-(+)- butan-2-ol/S-(-)-butan-2-ol/S-(+)-propan-2-ol all = 1/2

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2010	9791	03

(d) (i)	RX = 1 st order: Expt 1 to 2 [RX] ×3 = rate ×3 so directly	1	
(ii)	proportional	1	
(iii)	(iii) $OH^- = 1^{st}$ order: Expt 1 to 3 doubling [RX] would double rate to 8.0×10^{-4} so doubling again due to doubling [OH ⁻] so also directly proportional (2) rate = k[RX][OH ⁻] (ecf) (1) $4.0 \times 10^{-4} = k \times 0.050 \times 0.10$ (1) $k = 4.0 \times 10^{-4}/0.005 = 0.08$ (1) dm ³ mol ⁻¹ s ⁻¹ (1)		
(iv)	Br or Br	1	
		[23]	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper	
	Pre-U – May/June 2010	9791	03	

3	(a)	(i)	for CO change is from 2 moles of gas to 1 mole gas and 1 mole solid whereas for SiO change is from 2 moles of gas to 2 moles of solid owtte decrease in <u>disorder</u> / <u>randomness</u> is greater with SiO	1 1	
		(ii)	2 moles of solid produce 2 moles of solid owtte very little change in disorder	1 1	
	(b)	(i)	$\Delta_{\rm r}S = \Sigma S_{\rm products} - \Sigma S_{\rm reactants} = (31.1 + 55.3) - (2 \times 50) = -13.4 (J K^{-1} mol^{-1})$	2	+36.4 = 1/2 (not x2) -29.5 = 1/2 (reversed 55.3 and 55)
		(ii)	$\Delta_{\rm r}G^{\circ} = \Delta H - T\Delta S = -126.8 - (298 \times -3.4 / 1000)$ = -122.8 (kJ mol ⁻¹) (-22800 J mol ⁻¹)	2	-118 ecf from 36.4 / -137.6 ecf from -29.5 allow -123 do not allow -122 units not required but must be consistent
	(c)	(i)	$\Delta_{\rm r}G^{\circ} = -\text{RTIn}K_{\rm p} \text{ so } \ln\text{K}_{\rm p} = \Delta_{\rm r}G^{\circ} / -\text{RT}$ = -120.1 × 10 ⁻³ / (-8.31 × 298) = 48.50 so K_{\rm p} = 1.15 × 10^{21}	2	$3.72 \times 10^{21} = 1 / 2$ (used 122.8 from 3(b)(ii)) 1.05 = 1 / 2 (no × 10 ³ ignore units
		(ii)	$\Delta_r G^{\diamond} = 0 = \Delta H - T\Delta S$ so $\Delta H = T\Delta S$ and $T = \Delta H / \Delta S$ = -172500/-175.9 = 980.7 K	2	allow 981 K
		(iii)	activation energy / kinetic barrier too high	1	
				[13]	

		Page 7	Mark Scheme: Teac	hers' versi	on	Syllabus	Paper	
			Pre-U – May/Ju	ine 2010		9791	03	
4 (a)	$\begin{array}{c cccc} Pt & I \\ \underline{40.37} & \underline{52.59} \\ 195 & 127 \\ \underline{0.207} & \underline{0.414} \\ 0.207 & 0.207 \\ 1.00 & 2.00 \\ so \ EF = PtI_2N_2 \end{array}$	$\begin{array}{c} \underline{0.414}\\ 0.207\\ 2.00\\ 5.99 \end{array} \qquad \begin{array}{c} \underline{1.24}\\ 0.207\\ 5.99 \end{array}$	(1) (1) $M_r \text{ so MF} = PtI_2N_2H_6 (1)$ NH_3 (1) and trans (1) I	5	must see li	ink of EFM to RF	=M	
	bond Angle = 9	90°		1	ecf			
(b)	(octahedral) e. (tetrahedral) e.		gle = 90° gle = 109–110°	3		s needed for thi doesn't exist	rd mark	
(c)	lobes of three of results in split of	orbitals directed be of energy levels of	ng cartesian axes etween cartesian axes ⁻ d orbitals orbitals <u>absorbs</u> in visible	1 1 1				
				[13]				

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2010		03

5	(a)		C ₆ H ₇ NO ₂	1	
	(b)		x = 120° y = 104.5°	2	allow 104 – 105 for y
	(c)		1 = carboxylic Acid Level2 = hydrocarbon Level3 = carboxylic Acid Level	2	three = 2 two = 1
	(d)	(i)	donates pair of electrons to form covalent bond	1 + 1	
		(ii) H $CO_2C_2H_5$ H $CO_2C_2H_5$ H $CO_2C_2H_5$ -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C			
	(e)		$ \begin{array}{l} \mathbf{Q} = CH_2 = C(CH_2NH_2)CH_2OH \\ \mathbf{R} = CH_3CH_2OH \\ \mathbf{S} = CH_2 = C(CH_2NHOCCH_3)CH_2OCOCH_3 \\ \mathbf{T} = CH_3CH_2OCOCH_3 \\ \mathbf{U} = CH_3CH(CH_2NH_2)CO_2CH_2CH_3 \\ \hline \mathbf{Reactions of } \mathbf{Q} \text{ and } \mathbf{R} \text{ with ethanoyl chloride:} \\ 2:1 \text{ ratio with } \mathbf{Q} \text{ as both } NH_2 \text{ and OH acylated} \\ 1:1 \text{ ratio with } \mathbf{R} \text{ as only one OH group acylated (1)} \\ \hline \text{Reaction with } NH_2 \text{ produces (secondary) amide (+HCl) (1)} \\ \hline \text{Reaction with OH produce ester (+HCl) (1)} \\ \hline \frac{1}{H} \text{ NMR of } \mathbf{T} \text{ :} \\ \text{three signals indicate / due to 3 H environments (1)} \\ \text{triplet } (\mathbf{@} \sim 4.1 \text{ is protons on } CH_3 \text{ adj to } CH_2 (1) \\ \text{quartet } (\mathbf{@} \sim 4.1 \text{ is protons on } CH_3 \text{ on } C=O (1) \\ \hline \frac{1^3C}{1^3C} \text{ NMR of } \mathbf{T} \text{ :} \\ \text{two signals near } 20 = Cs \text{ in the two } CH_3 \text{ groups (1)} \\ \text{signal at } \sim 60 \text{ is } C \text{ in } CH_2 (1) \\ \text{signal at } \sim 170 \text{ is } C \text{ in } C=O (1) \\ \hline \frac{1}{H} \text{ NMR of } \mathbf{U} \text{ :} \\ \text{six signals indicate / due to 6 H environments (1)} \\ \text{disappearing signal due to } \underline{labile \text{ protons on } NH_2 (2) \\ \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	do not allow 'peptide' ¹ H NMR marks are independent of structures drawn except first mark ¹³ C NMR marks are independent of structures drawn
				[26]	