

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9791 CHEMISTRY

9791/02

Paper 2 (Part A Written), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

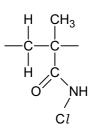
CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper
			Pre-U – May/June 2010	9791	02
1	octa 1 m	ane: ´ nark if	46 g mol ⁻¹ 114 g mol ⁻¹ 5 both numbers correct ty for incorrect sig. figs.		[1]
			n g cm ⁻³ = 2 g mol ⁻¹ / 24000 cm ³ mol ⁻¹ = 8.3×10^{-5} g cm ty for incorrect sig. figs.	1 ⁻³	[1]
	• •		definition) is mark if the zero is just entered in the table		[1]
			is given for indicating that it is the same as the enth	alpy of formatio	n given in the [1]
	equ	uation	+ $25/2O_2(g) \rightarrow 8CO_2(g) + 9H_2O(I)$ (1) must be per mole of octane and correctly balanced for tate symbols for octane, oxygen, carbon dioxide and w		[2]
	= {(= {- = - Δ _f H cor 2 m	(8 × – –3148 5470. l ^e (CO ₂ rect s narks	tane) = $8\Delta_{f}H^{e}$ (CO ₂) + $9\Delta_{f}H^{e}$ (H ₂ O) – $\Delta_{f}H^{e}$ (octane) 393.5) + (9 × –285.8) – (–250)} kJ mol ⁻¹ 3.0 – 2572.2 + 250.0} kJ mol ⁻¹ .2 kJ mol ⁻¹ (3) ₂) and $\Delta_{f}H^{e}$ (H ₂ O) multiplied by 8 and 9, respectively (1) igns (1) given if all correct apart from an arithmetical slip given for 5470.2 kJ mol ⁻¹		[max 3]
	(g) (i)		nanol: $-726.0 \text{ kJ mol}^{-1} / 32 \text{ g mol}^{-1} = -22.69 \text{ kJ g}^{-1}$		[1]
	(ii)	acce no p –1 fo	rogen: –285.8 kJ mol ⁻¹ / 2 g mol ⁻¹ = –142.9 kJ g ⁻¹ ept from 2 to 5 sig. figs. renalties for missing units or forgetting minus sign or each wrong answer i sig. figs. outside the allowed range (only penalise onc	e)	[1]

	Pa	ge 3	Mark Scheme: Teachers' version	Syllabus	Paper			
			Pre-U – May/June 2010	9791	02			
	(h)	(i) et =	hanol: –1367.3 kJ mol ⁻¹ × 0.789 g cm ⁻³ / 46 g mol ⁻¹ –23.5 kJ cm ⁻³		[1]			
		=	ctane: $-5470.2 \text{ kJ mol}^{-1} \times 0.703 \text{ g cm}^{-3} / 114 \text{ g mol}^{-1}$ -33.7 kJ cm^{-3} ccept only 2 or 3 sig. figs.					
		no _^	penalties for missing units or forgetting minus sign I for each error	X				
			I if sig. figs. outside the allowed range (only penalise onc here working is correct but final answer is inexplicably wi	•	nark [1]			
	(i)) the enthalpy change of combustion value for hydrogen is for standard condition relates to gaseous hydrogen, not to liquid hydrogen OR no account taken of different temperatures / latent heat of vaporisation of hydrog allow comment about how the value of the density of liquid hydrogen is unsuitable						
			ation of energy per unit volume for gaseous hydrogen ust a reference to the different state of hydrogen		[1]			
					[Total: 14]			
2	(a)	178/(1	78 + 32) × 100% = 84.8%		[1]			
	(b)	the po	t plotting of point in van Arkel triangle (1) int has coordinates (2.39, 2.45) half a gradation of leew is acceptable	/ay either side, i	.e. 0.05 on the			
			insulator (1)		[2]			
	(c)	it is ior	nic		[1]			
	(d)		on 1: HfO ₂ + 4HC $l \rightarrow$ HfC l_4 + 2H ₂ O (1) on 2: HfC l_4 + 2Mg \rightarrow Hf + 2MgC l_2 (1)					
			correct hafnium chloride formula in step 2 from step 1		[2]			
					[Total: 6]			

Pa	ige 4	Mark Scheme: Teachers' version	Syllabus	Paper
		Pre-U – May/June 2010	9791	02
(a)	CsF			[1]
(b)	charges allow a C	t a Cs electron is in the F outer shell (1) shown on the ions (1) Cs ion with 8 electrons shown in the outer shell s awarded if there is sharing of electrons		[2]
(c)	largest p	ossible difference in electronegativity between its two	constituent elem	ents owtte [1]
(d)	high boil	ing point / low vapour pressure / does not evaporate ea	asily	[1]
(e)	wide sep	paration of charges / large ions AND low charges both	needed for mark	[1]
(f)	(relativel compour	ace tension (1) y) high melting and/or boiling points or liquid at nds) or high specific thermal capacity (1) se as a solid than as a liquid (owtte) or greatest densit		to analogous [max 2]
(g)	oxygen l on each	drawn between hydrogen on one molecule and oxygen one pair drawn at the start of one of the H bonds and molecule (1) gle of 180° around an H-bonding hydrogen – show (1)	d both ends of a	
(h)	PTCDI, a melamin for both each am	and s shown between two amine groups on melamine and an H bond shown between the NH group on the e that is between the two H-bonding amine groups. (2) marks the H-bonds from the amine groups must be fro ine in particular, rather than just from $-NH_2$ otherwise j	PTCDI and the m one of the two	-N= atom on other hydrogens of


ecf from **(g)** if the notation for an H-bond is incorrect no marks if all three H bonds aren't correctly identified

small errors in copying down the structures should not be penalised as long as they don't affect the H-bonding interaction [2]

[Total: 13]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2010	9791	02

 4 (a) allow either the repeat fragment or the notation with it in brackets brackets must be used if a skeletal formula is used to represent the repeat unit only two carbons in the backbone should be shown in the fragment or between the brackets allow any unambiguous structural formula

[1]

(b) the monomer should show a C=C double bond between the two backbone carbons from the repeat unit, and an amide in place of the N-chloroamide the C=C double bond must be explicit rather than implied

NH₂ [1]

(ii)	(+)1 ecf from (c)(i) , i.e. answer to (c)(ii) should be the same as (c)(i)	[1]
(iii)	oxidation: $2I^- \rightarrow I_2 + 2e^-(1)$	

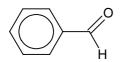
reduction: $C/O^{-} + 2H^{+} + 2e^{-} \rightarrow Cl^{-} + H_2O$ or $HOCl + H^{+} + 2e^{-} \rightarrow Cl^{-} + H_2O$ (1) [2]

(iv)	starch	
------	--------	--

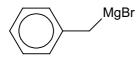
- (v) $12.50 \text{ cm}^3 \times 0.100 \text{ mol dm}^{-3} = 0.00125 \text{ mol}$ no sig. figs. or unit penalties
- (vi) 0.00125 mol / 2 = 0.000625 mol no sig. figs. or unit penalties ecf from (v), i.e. answer from (v) should be divided by 2 [1]
- (vii) 0.000625 mol × 35.5 g mol⁻¹ × 100 cm³ / 10 cm³ = 0.222 g (2) 1 mark for multiplying answer to (vi) by 35.5 g mol⁻¹ 1 mark for scaling up by 10, even if this isn't explicitly explained. no sig. figs. or unit penalties ecf from (i) [2]

[Total: 11]

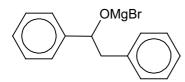
[1]

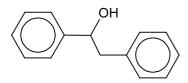

[1]

	Page 6				Mark	Sche	me: T	eache	rs' vers	ion	Syllab	us	Paper
						Pre-U	– May	y/June	e 2010		9791		02
5	(a)	292	- 122	2 = 170									[1]
	(b)	9											[1]
	(c)		rom p	oart (b)	, i.e. the	e numl	per of	eleme	ents wide	e = twice the	e number of	orbitals	[1]
	(d)	4p 5	s 4d	5p 6s 4	f 5d								[1]
	(e)	6d, 1	7p, 8s	and 5	g shoul	d be a	dded	to the	diagram	as below			[1]
		1s	2s 2p	3s 3p 3d	4s 4p 4d 4f	5s 5p 5d 5f 5g	6s 6p 6d	7s 7p	8s				
	(f)	two	g eleo	ctrons									[1] [Total: 6]
6	(a)	5 sig	gnals										[1]
	(b)	3 iso	omers	5									[1]
	(c)	igno oxid if a f	re on ising ormu	nission agents la is giv	of acidi that lao ven it m	ficatio ck an c lust be	n whe oxyger corre	re nec n atom ct to e	essary need to arn the	chlorate be indicate mark to earn the			[1]
	(d)	Gria	nard	(reage	nt)	-							
	(u)	Giy	naiu	licayel									[1]
	(e)	5: 6:	hydro dehy	olysis (dration	Í)			-	lysis (1) luction		functional	group	carbon has [3]


Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2010	9791	02

(f) A: benzyl alcohol (phenylmethanol) (1)


B: benzaldehyde (1)


C: benzylmagnesium bromide (1)

D: PhCH(OMgBr)CH₂Ph (1)

E: PhCH(OH)CH₂Ph (1)

allow all structural and displayed formulae as long as structure is unambiguous penalise repeated systematic or trivial errors only once

[5]

[Total: 12]

	Page 8		Mark Scheme: Teachers' version	Syllabus	Paper
			Pre-U – May/June 2010	9791	02
7	• •		e I and δ – on the N ect use of arrow nomenclature		[1]
	(b) (i)	NH₃	+ $3F_2 \rightarrow NF_3$ + $3HF$		[1]
	(ii)	2NF	$_3 \rightarrow N_2$ + 3F ₂ or with stoichiometry 1:1/2:3/2		[1]
	(iii)	shap bono (actu due	ect dot-cross diagram, including lone pairs on the fluor be = pyramidal (or trigonal pyramidal) (1) d angle indicated as anything from 102 to 107° (1) ual bond angle is 102.3 degrees: there is weak bondi to the electron density in the N–F bonds being shifte ine atoms)	ng pair-bonding	•
	(iv)	allov	nger N–F bonds / higher activation energy v: since the F–F bond is weaker than the C <i>l</i> –C <i>l</i> bond will be less exothermic than for NC <i>l</i> ₃	the thermal dec	composition of [1]
	(c) (i)	N ₂ O	$_5$ + H ₂ O \rightarrow 2HNO ₃		[1]
	(ii)	acce	$NO_3 + P_4O_{10} \rightarrow 6N_2O_5 + 4H_3PO_4$ (2) ept $6HNO_3 + P_2O_5 \rightarrow 3N_2O_5 + 2H_3PO_4$ ark for correct formulae but incorrect balancing		[2]
	(iii)	NO ₂	$^{+}$ NO ₃ ⁻ or NO ₂ NO ₃		[1]
					[Total: 11]
8	(a) cis	s (or Z))		[1]
	• •		-6,9,12,15-tetraenoic acid		
		•	etrenoic instead of tetraenoic vithout the hyphens or with hyphens instead of comma	5.	[1]
	(c) 2 ⁵	= 32 g	jeometric isomers		[1]
	(d) ins	stantar	neous dipole – induced dipole forces		[1]
			rom last carbon atom from the COOH functional group double bond (owtte)	is the final one	[1]
	ac 1,2	cept a 2-dibro	HBrCH ₃ (1) ny unambiguous structure that is correct. mopropane (1) nalise errors with commas, spaces or hyphens		[2]

Page 9		Mark Scheme: Teachers' version Syllab		Paper
		Pre-U – May/June 2010	9791	02
(g) (i)	mas ecf f 1 ma	unt of C=C bonds in 100 g = 6×100 g / 328 g mol ⁻¹ = s of iodine required = 1.83 mol × 254 g mol ⁻¹ = 465 g (or second mark if correct calculation with wrong numb ark lost for not quoting final answer to 3 or 4 sig. figs. enalties for missing units	(1)	[2]
(ii)	olei	c acid C ₁₈ H ₃₄ O ₂		[1]
(h) (i)	the I	–C <i>l</i> bond has a (permanent) dipole		[1]
(ii)	vol c = 1.2 give exce ecf f	of cervonic acid in calculation (as it reacts with the mo of 25% excess IC <i>l</i> 25 × (6 × 0.100 g / 328 g mol ⁻¹) / 0.100 mol dm ⁻³ = 22. this mark if a correct calculation has been performed ess IC <i>l</i> to be used = 25.0 cm ³ (1) or rounding up the volume of IC <i>l</i> to a pipette size (10 c sferred using a pipette (1)	9 cm ³ (1) with another fatty	
(iii)	250 trans leave mea mea Na ₂ S starc blue white shak	sfer sample directly to stoppered flask (1) cm^3 flask (1) sfer using 1,1,1-trichloroethane washings (1) e for 30 minutes after adding Wijs' reagent (1) suring cylinder used for adding KI (1) suring cylinder used for adding water (1) S_2O_3 dispensed from a burette or use of the word "titration ch indicator (1) -black to colourless (1) e tile (1) sting of (stoppered) flask after Na ₂ S ₂ O ₃ additions ("swirl sting with 1,1,1-trichloroethane in a fume cupboard (1)	·	
(iv)	amo amo com fatty rese	$Na_2S_2O_3(aq) \times 0.100 \text{ mol } dm^{-3} = amount Na_2S_2O_3(aq) (and the model of the model of$	xcess) (1) 0.100 g / molar	

L . J

[Total: 27]