MAXIMUM MARK: 60

The following abbreviations may be used in mark schemes:

1	alternative and acceptable answers for the same marking point
;	separates marking points
allow/accept/A	answers that can be accepted
AVP	any valid point - marking points not listed on the mark scheme but which are worthy of credit
AW/owtte	credit alternative wording / or words to that effect
	error carried forward
ignore/l	statements which are irrelevant - applies to neutral answers
not/reject/R	answers which are not worthy of credit
ORA	or reverse argument
(words)	bracketed words which are not essential to gain credit
words	underlined words must be present in answer to score a mark

Section A

1 (a) (i) 1016;
(ii) max 3 for comments on accuracy:
numbers of marked fish recaptured in, 2003 / 2004, are small ; estimates based on small numbers are unlikely to be accurate ; over a hundred / many, very young eels caught and not marked ; proportion of those not marked increases from 2000 to 2005 ; total number of fish caught one year on is not adjusted for very young fish ; so population is underestimated ;
AVP ;
[max 3]
max 3 for comments on limitations:
marking may injure animal ;
alters behaviour / makes it prone to predation / less able to feed / AW ;
marks may be lost ;
chances of catching fish may vary if marked;
chances of catching fish vary with their age ; A 'trap happy' / 'trap shy'
some fish easier to catch than others ;
fish unlikely to mix thoroughly in streams ;
activity of fish may depend on, environmental conditions / AW ;
effect of deaths ;
effect of migration, into / out, of streams ;
effect of any named limitation giving, underestimate / overestimate, of population size ;
AVP ;
[max 3]
(b) (i) most increase in, length / mass, in 2003-2004;
wide range of results;
especially for increase in mass ;
median increase in mass remained roughly constant (except for 2003-2004) ;
comparative data quote ;
AVP ;
[max 3]
(ii) (box-whisker plot) gives more information about the range of results in a sample ;
position of median, shows skewness of data / AW ;
does not display outliers / anomalous results ;
useful if data are not normally distributed ;
easier to compare data from different categories than using bar charts ;
AVP;
[max 3]
(c) no data on migration to and from the sea ;
no information on reproduction of eels ;
data is only about eels, not about food supply / habitat / niche / AW ;
no information on age structure ;
no standard against which to compare data on growth ;
no information on likely causes of death ;
no information on, behaviour / movement, of eels during each year ;
AVP;
AVP;

2 (a) majority / most, pollen released between midnight and midday / very little / none, released between midday and midnight ;
ref to, regular / diurnal, pattern ;
most pollen released at 0700 each day ;
ref to figures for maximum release ; e.g. 500 to 700 pollen grains per hour
most pollen released when wind speed low / very little pollen released when wind speed higher;
maximum pollen released when relative humidity high / ORA ;
steep decrease in pollen release as relative humidity falls ;
ref to figures in support ;
ref to data for, wind speed / humidity ;
[max 6]
(b) (confidence limited by):
only data from three days ;
no information on how many, sites / plants ;
not repeated ;
not carried out by other people / no data on reproducibility ;
no data with, constant wind speed / wind speed higher at night than during the day ;
no data with, constant relative humidity / humidity higher early part of day / AW ;
idea that correlation does not prove causation / AW ;
not an experiment as no factors have been controlled ;
data not analysed statistically therefore impossible to assign level of significance / confidence in the conclusions ;
[Total: 10]

3 (a) (i)

protein	relative molecular mass	relative mobility
A	29000	0.86
B	68000	0.38
C	unknown	0.72
D	17200	1.00
E	43000	0.62
F	77000	$0.36 ; ;$

5 correct $=2$
3 or 4 correct $=1$
0,1 or $2=0$
(ii) x-axis for relative mobility, y-axis for relative molecular mass, sensible scales ; axes labelled appropriately ;
points plotted correctly ; allow ecf from (a)(i)
straight line - not extending beyond first and last point ;
(b) co-ordinates on graph explained or shown on graph ; answer = approx 34000 ;

Section B - Planning

4

Sections	Expected answer	Mark
defining the problem	Hypothesis or prediction ; e.g. rate of uptake of glucose is faster than rate of uptake of maltose / K_{m} for uptake of glucose is lower / transport protein has a higher affinity Theory to support hypothesis or prediction ; e.g. glucose is a smaller molecule / does not require to be hydrolysed by enzyme / ref to production of maltase inside yeast cell Outline of strategy and justification / evaluation ; e.g. method of following the uptake of glucose and maltose separately taking samples at intervals and calculating uptake	
this could be awarded at the end of the plan method of determining (the concentration) of glucose at intervals ; method of determining (the concentration) of maltose at intervals ; e.g. (semi) quantitative Benedict's solution At least two control variables ; e.g. temperature, concentration of yeast, pH, volumes used, pre-treatment of glucose Risk assessment ; ref to hazard and precaution some points may be taken from a diagram or a flow or sequence diagram	[max 6]	

methods	use range of concentrations of glucose and maltose ; and / or use range of concentrations of yeast suspension ; to find suitable concentrations to make comparison dilution table(s) included ; yeast mixed with glucose and maltose solutions ; equilibration in water bath ; staggered start ; samples taken at stated intervals ; filtered to remove yeast ; suggested method of finding concentration of sugars described ; calculate quantity of sugars absorbed knowing initial concentration ; details of calculation ; uncertainty / precision, of results ; plot results and take gradient to give initial rate ; calculate mass of sugar absorbed per unit time ; repeats / replicates ; calculate, standard deviation / standard error / 95\% CI ; plot overall graph as a line graph ; state that answer is where rate of uptake becomes constant ; find K $K_{m} ;$ find $1 / 2 K_{m}$; discussion of affinity of transport proteins ; use, suitable named statistical test ; e.g. t-test / z-test / ANOVA	[max 19]

