Checkpoint Science Scheme of Work

www.tiremepapers.com

Chemistry – Year 2

Topic: Atoms and elements

Aims

That pupils should be able to:

- give symbols to the common elements
- understand that elements are made of atoms

Links

Checkpoint curriculum – Cm 1, Cm2 IGCSE Chemistry 4, IGCSE Co-ordinated Sciences C 1, IGCSE Combined Sciences Chemistry Topic One, IGCSE Physical Science 3.1

Words

element, atom, compound, chemical symbol

Activities		
Objectives	Possible Activities	Health and safety/notes
Students should be able to:		
explain what is meant by an element.	Provide students with the spherical model of the atom. Explain that elements contain only one type of atom and therefore cannot be split into different substances. They have only one name. Discuss how they might be arranged in solids, liquids and gases.	
name the lightest twenty elements.	Students are provided with a list of the names (or possibly samples in twenty tubes) of the lightest twenty elements, with picture / description.	Give a definition of an element.
research and present a profile of an element.	An element can be chosen and its properties, uses and history researched to construct an 'element profile' to present to the class.	
identify some elements by their flame tests.	Flame colours for elements can be observed.	Safety goggles must be worn. Use dilute hydrochloric acid for cleaning and recommend using any sodium compounds last because of their

		strong colour.
learn the symbols of the first twenty elements	The first twenty symbols must be learnt, students can test each other as a team game. e.g. "my symbol is the end of my footwear" Ans. sock = K = potassium "my symbol is a lot of water and a note" Ans. C and a = calcium Alternatively they can make up crosswords or wordsearches.	
explain the formation of simple compounds.	Simple combinations of elements can be carried out, accompanying each with a word equation. E.g. burning magnesium or steel wool in air/ oxygen heating iron wool in iodine vapour Students can be given names/ samples of	Safety goggles must be worn. Introduce the term compound. This must be carried out in a fume cupboard.
	common chemicals and can identify the elements that they contain.	

http://funbrain.com:80/periodic/index.html http://www.creative-chemistry.org.uk/activities/flametests.htm http://www.webelements.com/ http://sciencespot.net/Pages/classchem.html#Anchor4

Topic: Further Reactions

Aims

That pupils should be able to:

- explain the idea of compounds
- name some common compounds including oxides, hydroxides, chlorides, sulphates and carbonates
- use a word equation to describe a reaction

Links

Checkpoint curriculum – Cm 2, Cc1, Cc4, Cc7 IGCSE Chemistry 8.1, IGCSE Co-ordinated Sciences C 9, IGCSE Combined Sciences Chemistry Topic Four, IGCSE Physical Science 6

Words

oxides, hydroxides, sulphates, carbonates, salts

Objectives Students should be able to:	Possible Activities	Health and safety/notes
prepare crystals of common salt	Students can prepare salt but it is best to demonstrate the neutralisation and then provide students with solution. This is then evaporated to reduce and then left to cool. The crystals can be examined. Commercial production of salt can be researched.	It is important that students are evaporating a solution which is neutral. A pH probe can be demonstrated if available. Safety goggles must be worn.
know that other chlorides can be prepared by the same method	Other chlorides can be prepared by adding metals (magnesium, zinc, iron) to dilute hydrochloric acid.	Safety goggles must be worn. Word equations should be applied to each reaction.
know how salts of sulphuric acid are prepared.	Students prepare salts of sulphuric acid such as zinc and acid, copper oxide and acid, calcium carbonate and acid. Magnesium sulphate, Epsom salts, is an old remedy for constipation.	Safety goggles must be worn. Word equations should be applied to each reaction.
know how salts of nitric acid are prepared	Students prepare "fertiliser", salts of nitric acid using a carbonate, such as calcium, with dilute acid.	Safety goggles must be worn. Word equations should be applied to each reaction.
know that oxides can be prepared by combustion.	The simplest reaction is the combustion of	Safety goggles must be worn.

know how some hydroxides can be prepared.	elements to form oxides. Charcoal can be burned to form carbon dioxide which can be collected and identified. Magnesium can be burned in a crucible. It can be weighed before and after to show addition of oxygen. Iron and copper can be burned in oxygen. Some coloured hydroxides can be observed by	Word equations should be applied to each reaction. Burning magnesium in air should not be viewed directly due to its brightness. Link this to its use in flares and fireworks. Results are not reliable due to loss of magnesium oxide. Common names of caustic soda, slaked lime,
know now some hydroxides can be prepared.	adding a little sodium hydroxide to solutions containing ions of aluminium, zinc, calcium, copper, iron (II) or iron (III).	limewater should be given.
know some of the properties of carbonates.	Carbonates other than those used above, can be observed and their properties investigated, such as sodium hydrogen carbonate and copper carbonate.	Common names of sodium bicarbonate, limestone and, possibly, malachite.

http://www.science-house.org/learn/CountertopChem/exp9.html

Topic: Compounds and mixtures

Aims

That pupils should be able to:

• explain the differences between elements, compounds and mixtures

Links

Checkpoint curriculum – Cm 3

IGCSE Chemistry 3, IGCSE Co-ordinated Sciences C 1, IGCSE Combined Sciences Chemistry Topic One, IGCSE Physical Science 3.2

Words

compounds, fractional, distillation

Activities	Dessible Astivities	
Objectives	Possible Activities	Health and safety/notes
Students should be able to:		
revise the concept of elements	Students should revise earlier ideas about elements e.g. through a word search or researching the cost of some of the elements in	
	your body / earth's crust.	
distinguish between an element, a mixture and a	Students compare the properties of an iron/sulphur	Do as a demonstration or give a reminder of safety
compound.	mix with the product of a reaction between the	precautions.
	elements. The mixture should be heated strongly	Safety goggles must be worn.
	until it begins to react. Show that the formation of a	
	mixture is physical in nature whereas the formation	Characteristics include exchange of energy and
	of a compound is a chemical reaction.	the formation of new material with different
	Other examples include heating of copper and	properties from reactants. Chlorine gas should
	sulphur, burning of magnesium or iron in chlorine.	only be used in demonstration in a fume cupboard.
describe the physical properties of solutions.	Students can investigate how the addition of salt to	Safety goggles must be worn for heating salt
	ice / water changes its freezing point / boiling	water.
	point.	Link with use on roads for preventing freezing.
	The value and limitations of different tests for	Tests include B.Pt of a sample, use of cobalt
	water can be observed and discussed.	chloride paper, anhydrous copper sulphate or
		UI paper.
separate compounds from mixtures of compounds.	Students should plan and carry out the	Safety goggles must be worn.
	preparation of clean samples of one or both	It could be run as a competition to get the most
	constituents from a mixture of e.g.	salt possible from their mixture, verify by weighing.

	sand and sugar sand and salt powdered chalk and copper sulphate	Desalination can be discussed.
separate elements from some compounds.	Copper carbonate can be heated to give copper oxide which can be heated in the presence of hydrogen to give copper.	Safety goggles must be worn. Link with the use of chlorine to sterilise drinking water.
know how the elements of water can be separated and how the ratio of volumes relates to the formula of water.	The electrolysis of acidified water can be investigated and tests for hydrogen and oxygen carried out. The ratio of volumes of hydrogen to oxygen should be measured and used to represent the idea of a formula as a short hand for a compound.	Other simple formulae can be introduced eg. CO ₂ , NaOH, H ₂ SO ₄ . Note that it is beyond the scope of Checkpoint to learn formulae or balance equations.
know how liquids can be separated by fractional distillation.	Students should observe the fractional distillation of a mixture of liquids and compare with the electrolysis of water i.e. no fixed ratio of constituents. Crude oil can be distilled in this way. Link with the uses of the fractions.	The products can be hazardous so this should be done by demonstration with very good ventilation. A safer method using made up crude oil exists (refer to CLEAPPS Haz-cards (ASE).

Topic: Metals and non-metals

Aims

That pupils should be able to:

• describe and explain physical and chemical differences between metals and non-metals

Links

Checkpoint curriculum – Cm 4, Cc1, Cc4

IGCSE Chemistry 10, IGCSE Co-ordinated Sciences C 16, IGCSE Combined Sciences Chemistry Topic Two, IGCSE Physical Science 8

Words

density, malleability, ductility, combustion, alkali metals

Objectives	Possible Activities	Health and safety/notes
Students should be able to:		
	Note that much of the material in this section is	
	given as background information. Reactions of	
	metals can be confined to sodium, magnesium,	
	zinc, iron, copper, silver and gold.	
order properties of metals and non-metals for	A scale of hardness for metals and non-metals can	
comparison.	be produced by a "which scratches which?"	
	process. Pins, paperclips, graphite, etc can be	
	used.	
	A density scale can be made, by finding the	
	masses of similar cubes.	
	Flexibility can be investigated by trying to bend	
	strips of metals and non-metals.	
	Melting points from a database can be treated	
	graphically to compare metals and non-metals.	
state the properties of metals and say in what	Students can discover from practical work or	Sodium must be demonstrated by the teacher.
ways some are exceptional.	resources which metals do not share the general	
	properties of metals. Examples of	
	exceptions are:	
	hardness and melting point Sodium	
	density Magnesium, aluminium	
	magnetic properties Iron, nickel, cobalt	

	colour Gold, copper state at room temperature Mercury	Mercury should be in a sealed bottle.
know the methods of extraction of some metals and some non-metals.	Students can observe some ores, preferably at least one obtainable in powdered form. Methods of extraction can be studied, such as obtaining copper by heating copper oxide in a stream of hydrogen or by plating a coin by electrolysis. Non-metals occur mainly in air, the sea and in organic materials. Extraction of oxygen from air can not be demonstrated, electrolysis to obtain hydrogen may have been seen earlier. Carbon can be released during burning of organic materials such as paper, wax etc.	Safety goggles must be worn. Note that no details of metal extraction will be tested at this level. The mining of copper etc can be discussed as with particular reference to social and environmental issues. Recycling can be discussed as a way of saving resources.
know how metals and non-metals react with oxygen.	The combustion of some elements in oxygen, if not already seen, can be demonstrated. Observations to be made are: not all metals react at the same rate, some products can be dissolved in water. These can be tested with Universal indicator paper to make a comparison between metals and non-	Safety goggles must be worn. Word equations should be used. Acid rain and global warming can be raised as an issue here.
	metals. Partial oxidation of copper is an interesting experiment. A small sheet of copper is folded in four and heated strongly. Once the metal is cooled and unfolded, fascinating patterns reveal the partial oxidation.	
know how metals and non-metals react with water.	The reaction of a range of metals and non-metals with water / steam can be investigated. Examples include sodium (must be demonstrated), lithium, magnesium, iron, copper and carbon, sulphur.	Safety goggles must be worn. Screens must also be used for sodium. The solution resulting can be shown to be alkaline hence 'alkali metals'.
know how metals and non-metals react with acids.	The reaction of some metals with dilute acids can be investigated. The hydrogen gas given off should be tested.	Safety goggles must be worn. Word equations should be used. A general equation can be given i.e. metal + acid = salt + hydrogen

http://www.chem4kids.com/elements/010_ne/index.html

Topic: Corrosion

Aims

That pupils should be able to:

• describe chemical reactions which are not useful

Links

Checkpoint curriculum – Cc 2 IGCSE Chemistry 10, IGCSE Co-ordinated Sciences C 15, IGCSE Combined Sciences Chemistry Topic Three, IGCSE Physical Science 8

Words

corrosion, rusting, oxidation

ACTIVITIES		
Objectives	Possible Activities	Health and safety/notes
Students should be able to:		
describe some reactions which happen relatively quickly.	Rapid combustion can be demonstrated with a fine powder such as cornflour in a tin with a lighted candle. When the flour is blown with a straw the explosion can blow the lid off the tin. This is a	A screen should protect pupils. Safety goggles should be worn. The lid should not be placed on too tightly to avoid splitting the tin.
	danger in mills, coal mines etc.	
describe some reactions which happen relatively slowly.	Slow oxidation of fats and oils takes place turning them rancid. Students can examine some food labels to check which contain antioxidants .	
state the conditions necessary for the formation of rust.	A suitable introduction would be a survey of cars or bikes to find out where and at what age rusting mostly occurs. Students can set up tubes containing nails under different conditions. Include one in dry air (add anhydrous copper sulphate), one in boiled distilled water and one dipping in water and open to the air.	Safety goggles should be worn.
know that rusting is an oxidation process.	Students should learn that the reaction forming rust is one of oxidation, the remaining gases in the air are not involved, apart from water vapour. It can be shown that rust causes a gain in weight.	

know the factors which increase the rate of rusting.	Students can design an investigation into other factors such as temperature and presence of salt in the water.	
know ways of preventing rust.	Students should learn about ways of preventing rust from forming e.g. painting, greasing, galvanising, plastic coating and then suggest where they could be most appropriately used. Students can bring in or look at a bike and suggest how different parts are protected from corrosion.	
recognise other examples of corrosion.	Examples of metals which corrode are copper, bronze, silver and aluminium (although the oxide layer formed prevents further corrosion). Students might be able to suggest these or others from their own experience or pictures. Students could research the uses of iron and suggest why it is used even though it rusts.	

http://ericir.syr.edu