Sample Questions and Mark Schemes

1 The diagram shows the first three patterns in a series of dots.

pattern 1

pattern 2

(a) Complete the table below.

pattern number	1	2	3	4	5
number of dots	5	8	11		

(b) How many dots will be needed for pattern number 8? \qquad
(c) Which pattern needs 62 dots? \qquad
(d) Write down a rule connecting the number of dots and the pattern number.
\qquad
\qquad

Mark Scheme for Question 1

Question No. 1

- Recognise, continue and generalise number patterns including finding expressions for the nth term
- Use and interpret positive, negative and zero indices

Part	CF	Mark	Answer	Further Information
(a)	Ag5	2	14 and 17	
(b)	Ag5	1	26	
(c)	Ag5	1	20	Accept other letters
(d)	Ag5	1	$\mathrm{S}=3 \mathrm{n}+2$ or Number of dots $=3$ times	
	Total	5		pattern number then add 2

[^0]2 (a) In 1998 an Australian bought a coin collection for $\$ 17550$.
Before taking the collection home he had to pay a tax of 22%.
Calculate how much tax he paid.
\$ \qquad
(b) The collection was originally owned by an American.

He made a profit of 30% when he sold it to the Australian.
Calculate the amount paid by the American.
\$ \qquad
(c) The American was charged $\$ 877.50$ for selling the collection. Give the percentage of the sale price of $\$ 17550$.
\qquad \%
(d) The collection was a mixture of bronze and silver coins in the ratio 5:2.

The total number of coins in the collection was 4557.
Calculate how many coins were silver.

Mark Scheme for Question 2

Question No. 2

- Calculate the percentage of a quantity; express one quantity as a percentage of another; recognise the notation of ratio, use ratio and direct proportion in context

Part	CF	Mark	Answer	Further Information
(a)	Ns1	1	3861	
(b)	Ns1	1	5	
(c)	Ns3	1	$\frac{2}{7} \times 4557$	1 mark for $\frac{2}{5} \times 4557$ seen
		1	1302	
	Total	4		

3 The diagram shows a cylindrical can closed at both ends. The height of the can is 15 cm and its radius is 3.5 cm . The volume of the can is 500 ml .

(a) (i) Calculate the circumference of the circular end of the can. Give your answer to the nearest whole cm.
(ii) Calculate the area of the circular end of the can. Give your answer to 1 decimal place.
(b) The height of another can is 12 cm .

The area of its circular end is $24.6 \mathrm{~cm}^{2}$.
Calculate the volume of this can.
cm^{3} [1]

Mark Scheme for Question 3

Question No. 3

- Calculate the perimeter and area of triangles, quadrilaterals and circles, and the volumes derived from these shapes
- Understand approximation to specified numbers of significant figures and decimal places; give appropriate upper and lower bounds for data given to specified accuracy

Part	CF	Mark	Answer	Further Information
(a)(i)	Sm5	1	22	
(ii)	Sm5	1	38.4851	
	Ns4	1	38.5	
(b)	Sm5	1	295.2	
	Total	4		

4 Remove the brackets and simplify.
(a) $2(x+3)+3 x$
(b) $3(x+2)-2(x+1)$
(c) $(x+2)(x-3)$

Mark Scheme for Question 4

Question No. 4

- Manipulate directed numbers; use brackets and extract common factors

Part	CF	Mark	Answer	Further Information
(a)	An4	1	$2 x+6$	Mark is for correct removal of brackets
	An4	1	$5 x+6$	Mark is for correct collection of terms Award both marks for correct answer even if working is not shown
(b)	An4	1	$3 x+6$ or $-2 x-2$	Mark is for correct removal of either brackets
	An4	1	$x+4$	Mark is for correct collection of terms Award both marks for correct answer even if working is not shown Note: award 1 mark for $x+8$
(c)	An4	1	$x^{2}-3 x+2 x-6$	Mark is for correct removal of brackets items in any order, $\text { e.g. } \left.-3 x+2 x+x^{2}-x-6\right)$
	An4	1	$x^{2}-x-6$	Mark is for correct collection of terms Award both marks for correct answer even if working is not shown
	Total	6		

Each section on a circular board has a number between 1 and 20, as shown on the diagram. Starting each time at 18, and working clockwise, give the first number that satisfies the following conditions:
(a) is a prime number
(b) is a multiple of 2, 3, 4 and 6
(c) is a an odd square number
(d) is the square root of an even number on the board

Mark Scheme for Question 5

Question No. 5

- Use prime numbers, common factors and common multiples, squares, square roots and cubes of numbers

Part	CF	Mark	Answer	Further Information
(a)	Np4	1	13	
(b)	Np4	1	12	
(c)	Np4	1	9	Accept 2
(d)	Np4	1	4	
	Total	4		

A spinner, made in the shape of a regular pentagon, is shown.
O is the centre of the pentagon.
(a) Calculate the size of:
(i) angle x
$x=$
(ii) angle y
$y=$

The spinner is shaded and numbered as shown in this picture.
\qquad ㅇ [1]
\qquad $\bigcirc[1]$
(b) Calculate the probability that the spinner will:
(i) land on a black odd number. Give your answer as a fraction.
(ii) land on a white even number. Give your answer as a decimal.
(iii) not land on a grey number. Give your answer as a percentage.

Mark Scheme for Question 6

Question No. 6

- Calculate unknown angles using the properties of: angles at a point, angles formed within parallel lines and angle properties of triangles and quadrilaterals
- Calculate the probability of a single event

Part	CF	Mark	Answer	Further Information
(a) (i)	Sg2	1	72	
(ii)	Sg2	1	108	
(b) (i)	Nd3	1		If probability is given
(ii)	Nd3	1	0.2 or . 2	in wrong format,
(iii)	Nd3	1	80	this question
	Total	5		

7 (a) Complete the table below for the graph $y=2 x-3$

x	-2	-1	0	1	2	3
y	-7			-1		3

(b) On the grid below draw the graphy of $y=2 x-3$

(c) Write down the gradient of the graph $y=2 x-3$
(d) The graph of $y=x-1$ is also drawn on the grid above.

Use your graph to solve the simultaneous equations: $y=2 x-3$ and $y=x-1$

$$
\begin{aligned}
& x= \\
& y=
\end{aligned}
$$

[2]

Mark Scheme for Question 7

Question No. 7

- Draw and interpret the graphs of simple functions, use tables of values and find the gradient of straight line graphs
- Find the solution of linear and simple simultaneous equations using graphs

In the diagram $P Q$ is parallel to $R S$.
Find angles a, b, c and d.

$$
\begin{align*}
& a=\square \\
& b=\square^{\circ} \\
& c=\square^{\circ} \\
& d=L_{0}
\end{align*}
$$

Mark Scheme for Question 8

Question No. 8

- Calculate unknown angles using the properties of: angles at a point, angles formed within parallel lines and angle properties of triangles and quadrilaterals

Part	CF	Mark	Answer	Further Information	
(a)	Sg2	1	50		
(b)	Sg2	1	90		
(c)	Sg2	1	40		
(d)	Sg2	1	40		
	Total	4			

[^0]: 1 CF stands for Curriculum Framework. This column shows which part of the Curriculum Framework is being assessed in the question. The first letter, N, A or S, shows the main area of Mathematics: Number, Algebra or Space. The next letter shows the subtopic - e.g. Number is divided into Properties (p), Problem Solving (s) and Data Handling (d). The number shows which bullet point from that section of the Curriculum Framework is being assessed.

