Eton College King's Scholarship Examination 20

MATHEMATICSA

Answer Question 1 and as many of the other five questions as you can. Question 1 is worth 50 marks. All other questions are worth 10 marks each.

Show all of your working. The use of calculators is permitted.
\square

1. Ihis question is compulsory.
(a) If $x=-5$ and $y=12$, evaluate the following, leaving your answers as exact fracti
(i) $\frac{8 x^{2}-y^{2}}{y-12 x}$
(ii) $\frac{y}{2 x}+\frac{x}{y}$
(b) Solve the following inequalities:
(i) $\frac{2}{3}(x-3)<18$
(ii) $8-3 x<2 x-2$
(c) Simon and Terry are both told to draw an isosceles triangle which has two angles differing by 15°. They both draw a triangle but find they have drawn ones with different angles from each other. Can they both be correct?
(d) Calculate
(i) 15% of $£ 40.00$
(ii) 89% of $£ 111.00$
(e) A triangle of base length 29.7 cm has area $8.9 \mathrm{~cm}^{2}$. Find the height of the triangle, giving your answer correct to 2 significant figures.
(f) Solve the following equations, leaving your answers as mixed numbers where appropriate:

$$
\begin{align*}
& \text { (i) } \frac{4-3 x}{5}=9 \tag{2}\\
& \text { (ii) } \frac{2-5 x}{3}=\frac{5-3 x}{2} \tag{3}
\end{align*}
$$

(g) In the diagram below, AB and CD are parallel. Calculate the value of χ.

(h) Solve the following simultaneous equations

$$
\begin{aligned}
& 4 x-3 y=15 \\
& 5 x+7 y=8
\end{aligned}
$$

(i) Simplify the following as far as possible:
(i) $\left(3 a b^{4}\right)^{3}$
(ii) $\frac{8 d^{2}-3 d^{2}}{20 d^{2}}$
(j) A rectangular field has length 30 m . Its width is half its length.
(i) Find, correct to 3 significant figures, the distance between the opposite corners of the field.
(ii) A second field is 9% less wide but 9% longer. Find the distance, correct to 3 significant figures, between the opposite corners of the second field.
(k) (i) By what do you multiply 8 to get $2 \frac{1}{2}$? Give your answer as an exact fraction.
(ii) By what do you multiply $a b$ to get $\frac{2 b^{2}}{3}$?
(1) A large company insists that each shareholder invests at least $£ 12,000$ in the company. At present, the company has two thousand shareholders and their average investment is £13,040.
(i) How much is their total investment?
(ii) Suppose that 100 new people become shareholders in the company. What is the lowest level to which the average investment could drop? Give your answer to the nearest pound.
(iii) In fact a further n new people become shareholders and on average they invest $£ 12,320$. If the average investment across all the shareholders is now $£ 12,960$, find n.
2. The diagram shows four identical circles inside one large circle. The radius of each of the smaller circles is $\sqrt{2} \mathrm{~cm}$.

(a) Prove that the radius of the large circle is $2+\sqrt{2} \mathrm{~cm}$.
(b) Show that the shaded area is $2 \pi(2 \sqrt{2}-1) \mathrm{cm}^{2}$.
(c) Find an exact expression for the t eter of the shaded area.
3. Ihis question is about factors of numbers.
(a) Write down all of the 6 factors of 45 .
(b) Two whole numbers multiply to give 45 . Explain why their sum must be even.
(c) Two whole numbers multiply to give 32. Explain why if their sum is odd, the two numbers must add to 33 .
(d) Two whole numbers multiply to give 81. What are the possible values for their sum?
(e) Two whole numbers multiply to give 1,417,176 and add to make 354,298 . Find the two numbers.
4. In this question, the diagrams are not drawn to scale.
(a) In the diagram below, the points A, B and C all lie on a straight line and the angle CBD is a right angle. AD and CD are 3 cm and 8.2 cm respectively and AB is 2.4 cm .

(i) Calculate the length BD .
(ii) Calculate the length BC .
(b) Show that $(c-x)^{2}=c^{2}-2 c x+x^{2}$.
(c) In the diagram below, P, Q and R lie on a straight line and angle SQR is a right angle.

The lengths PS, SR and RP are a, b and $c \mathrm{~cm}$ respectively and QR is $x \mathrm{~cm}$. Use algebra to show that

$$
\begin{equation*}
x=\frac{b^{2}+c^{2}-a^{2}}{2 c} \tag{4}
\end{equation*}
$$

5. (a) A postman has ten letters to deliver. Each letter is addressed to exactly one of addresses. Explain why at least two letters have the same address on them.
(b) 230 Etonians have their birthday during the week starting Monday 30th July. Explain why at least 33 of them must have their birthday on the same day.
(c) At a birthday party, thirty five sweets are shared between eight children. Given that each child receives at least one sweet, is it possible for them all to receive a different number of sweets?
(d) A rectangle has width 6 cm and height 12 cm . If 9 points are chosen from within the rectangle, explain why two of the points must be at most $\sqrt{18} \mathrm{~cm}$ away from each other. [Hint: divide the rectangle into squares of equal area.]
6. (a) Show by multiplying out that if $(x-A)(y-A) \leq 0$, then

$$
\begin{equation*}
x y \leq A(x+y-A) \tag{2}
\end{equation*}
$$

For any set of numbers, the R algorithm is as follows:

- Work out the mean of the numbers: call the answer A
- Replace x, the smallest number in the set, and y, the largest number in the set, by A and $x+y-A$ respectively. (If there is more than one smallest number, replace the first. If there is more than one greatest number, replace the first.)

For example, for the number set $\{1,4,6,9\}, A=5$ and so 1 is replaced by 5 and 9 is replaced by 5 . Thus the R algorithm replaces $\{1,4,6,9\}$ with $\{5,4,6,5\}$.

Furthermore, the R algorithm replaces $\{5,4,6,5\}$ by $\{5,5,5,5\}$.
(b) Show that if the R algorithm is applied twice to $\{10,13,23,29,35\}$, the resulting set of numbers is $\{22,22,23,20,23\}$.
(c) Show further that if the R algorithm is applied 4 times to $\{10,13,23,29,35\}$, the resulting set of numbers is $\{22,22,22,22,22\}$.
(d) Use part (a) to explain why when you apply the R algorithm to a set of numbers, then the new set of numbers will not multiply to give a smaller answer than the original set of numbers.
(e) Explain why if you repeat the R algorithm, A remains unchanged.
(f) Use your answers to the earlier parts to explain why $10 \times 13 \times 23 \times 29 \times 35 \leq 22^{5}$.
[END OF PAPER]

